人教版八年級(jí)下冊(cè)數(shù)學(xué)教案

夢(mèng)熒4371 分享 時(shí)間:

人類的歷史中,數(shù)學(xué)發(fā)揮著不可替代的作用,同時(shí)也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具和通用手段。以下是小編準(zhǔn)備的人教版八年級(jí)下冊(cè)數(shù)學(xué)教案范文,歡迎借鑒參考。

人教版八年級(jí)下冊(cè)數(shù)學(xué)教案篇1

教學(xué)內(nèi)容

本節(jié)課主要介紹全等三角形的概念和性質(zhì).

教學(xué)目標(biāo)

1.知識(shí)與技能

領(lǐng)會(huì)全等三角形對(duì)應(yīng)邊和對(duì)應(yīng)角相等的有關(guān)概念.

2.過(guò)程與方法

經(jīng)歷探索全等三角形性質(zhì)的過(guò)程,能在全等三角形中正確找出對(duì)應(yīng)邊、對(duì)應(yīng)角.

3.情感、態(tài)度與價(jià)值觀

培養(yǎng)觀察、操作、分析能力,體會(huì)全等三角形的應(yīng)用價(jià)值.

重、難點(diǎn)與關(guān)鍵

1.重點(diǎn):會(huì)確定全等三角形的對(duì)應(yīng)元素.

2.難點(diǎn):掌握找對(duì)應(yīng)邊、對(duì)應(yīng)角的方法.

3.關(guān)鍵:找對(duì)應(yīng)邊、對(duì)應(yīng)角有下面兩種方法:(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;(2)對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,?兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角.教具準(zhǔn)備

四張大小一樣的紙片、直尺、剪刀.

教學(xué)方法

采用“直觀──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實(shí)例,加深認(rèn)識(shí).教學(xué)過(guò)程

一、動(dòng)手操作,導(dǎo)入課題

1.先在其中一張紙上畫出任意一個(gè)多邊形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?

2.重新在一張紙板上畫出任意一個(gè)三角形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?

【學(xué)生活動(dòng)】動(dòng)手操作、用腦思考、與同伴討論,得出結(jié)論.

【教師活動(dòng)】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個(gè)多邊形和三角形.

學(xué)生在操作過(guò)程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個(gè)過(guò)程要細(xì)心.

【互動(dòng)交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個(gè)圖形叫做全等形,用“≌”表示.

概念:能夠完全重合的兩個(gè)三角形叫做全等三角形.

【教師活動(dòng)】在紙版上任意剪下一個(gè)三角形,要求學(xué)生手拿一個(gè)三角形,做如下運(yùn)動(dòng):平移、翻折、旋轉(zhuǎn),觀察其運(yùn)動(dòng)前后的三角形會(huì)全等嗎?

【學(xué)生活動(dòng)】動(dòng)手操作,實(shí)踐感知,得出結(jié)論:兩個(gè)三角形全等.

【教師活動(dòng)】要求學(xué)生用字母表示出每個(gè)剪下的三角形,同時(shí)互相指出每個(gè)三角形的頂點(diǎn)、三個(gè)角、三條邊、每條邊的邊角、每個(gè)角的對(duì)邊.

【學(xué)生活動(dòng)】把兩個(gè)三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時(shí)能完全重在一起?(2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)?

【交流討論】通過(guò)同桌交流,實(shí)驗(yàn)得出下面結(jié)論:

1.任意放置時(shí),并不一定完全重合,?只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合.

2.這時(shí)它們的三個(gè)頂點(diǎn)、三條邊和三個(gè)內(nèi)角分別重合了.

3.完全重合說(shuō)明三條邊對(duì)應(yīng)相等,三個(gè)內(nèi)角對(duì)應(yīng)相等,?對(duì)應(yīng)頂點(diǎn)在相對(duì)應(yīng)的位置.

人教版八年級(jí)下冊(cè)數(shù)學(xué)教案篇2

八年級(jí)下數(shù)學(xué)教案-變量與函數(shù)(2)

一、教學(xué)目的

1.使學(xué)生理解自變量的取值范圍和函數(shù)值的意義。

2.使學(xué)生理解求自變量的取值范圍的兩個(gè)依據(jù)。

3.使學(xué)生掌握關(guān)于解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會(huì)求其函數(shù)值。

4.通過(guò)求函數(shù)中自變量的取值范圍使學(xué)生進(jìn)一步理解函數(shù)概念。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):函數(shù)自變量取值的求法。

難點(diǎn):函靈敏處變量取值的確定。

三、教學(xué)過(guò)程

復(fù)習(xí)提問(wèn)

1.函數(shù)的定義是什么?函數(shù)概念包含哪三個(gè)方面的內(nèi)容?

2.什么叫分式?當(dāng)x取什么數(shù)時(shí),分式x+2/2x+3有意義?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什么叫二次根式?使二次根式成立的條件是什么?

(答:根指數(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)

4.舉出一個(gè)函數(shù)的實(shí)例,并指出式中的變量與常量、自變量與函數(shù)。

新課

1.結(jié)合同學(xué)舉出的實(shí)例說(shuō)明解析法的意義:用教學(xué)式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。

2.結(jié)合同學(xué)舉出的實(shí)例,說(shuō)明函數(shù)的自變量取值范圍有時(shí)要受到限制這就可以引出自變量取值范圍的意義,并說(shuō)明求自變量的取值范圍的兩個(gè)依據(jù)是:

(1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達(dá)式)有意義。

(2)自變量取值范圍要使實(shí)際問(wèn)題有意義。

3.講解P93中例2。并指出例2四個(gè)小題代表三類題型:(1),(2)題給出的是只含有一個(gè)自變量的整式;(3)題給出的是只含有一個(gè)自變量的分式;(4)題給出的是只含有一個(gè)自變量的二次根式。

推廣與聯(lián)想:請(qǐng)同學(xué)按上述三類題型自編3個(gè)題,并寫出解答,同桌互對(duì)答案,老師評(píng)講。

4.講解P93中例3。結(jié)合例3引出函數(shù)值的意義。并指出兩點(diǎn):

(1)例3中的4個(gè)小題歸納起來(lái)仍是三類題型。

(2)求函數(shù)值的問(wèn)題實(shí)際是求代數(shù)式值的問(wèn)題。

補(bǔ)充例題

求下列函數(shù)當(dāng)x=3時(shí)的函數(shù)值:

(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。

(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

小結(jié)

1.解析法的意義:用數(shù)學(xué)式子表示函數(shù)的方法叫解析法。

2.求函數(shù)自變量取值范圍的兩個(gè)方法(依據(jù)):

(1)要使函數(shù)的解析式有意義。

①函數(shù)的解析式是整式時(shí),自變量可取全體實(shí)數(shù);

②函數(shù)的解析式是分式時(shí),自變量的取值應(yīng)使分母≠0;

③函數(shù)的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)≥0。

(2)對(duì)于反映實(shí)際問(wèn)題的函數(shù)關(guān)系,應(yīng)使實(shí)際問(wèn)題有意義。

3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。

練習(xí):P94中1,2,3。

作業(yè):P95~P96中A組3,4,5,6,7。B組1,2。

四、教學(xué)注意問(wèn)題

1.注意滲透與訓(xùn)練學(xué)生的歸納思維。比如例2、例3中各是4個(gè)小題,對(duì)每一個(gè)例題均可歸納為三類題型。而對(duì)于例2、例3這兩道例題,雖然要求各異,但題目結(jié)構(gòu)仍是三類題型:整式、分式、二次根式。

2.注意訓(xùn)練與培養(yǎng)學(xué)生的優(yōu)質(zhì)聯(lián)想能力。要求學(xué)生仿照例題自編題目是有效手段。

3.注意培養(yǎng)學(xué)生對(duì)于“具體問(wèn)題要具體分析”的良好學(xué)習(xí)方法。比如對(duì)于有實(shí)際意義來(lái)確定,由于實(shí)際問(wèn)題千差萬(wàn)別,所以我們就要具體分析,靈活處置。

人教版八年級(jí)下冊(cè)數(shù)學(xué)教案篇3

1、教材分析

(1)知識(shí)結(jié)構(gòu)

(2)重點(diǎn)、難點(diǎn)分析

本節(jié)內(nèi)容的重點(diǎn)是線段垂直平分線定理及其逆定理。定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點(diǎn)在某條直線上及一條直線是已知線段的垂直平分線的依據(jù)。

本節(jié)內(nèi)容的難點(diǎn)是定理及逆定理的關(guān)系。垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反。學(xué)生在應(yīng)用它們的時(shí)候,容易混淆,幫助學(xué)生認(rèn)識(shí)定理及其逆定理的區(qū)別,這是本節(jié)的難點(diǎn)。

2、 教法建議

本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式。提出問(wèn)題讓學(xué)生想,設(shè)計(jì)問(wèn)題讓學(xué)生做,錯(cuò)誤原因讓學(xué)生說(shuō),方法與規(guī)律讓學(xué)生歸納。教師的作用在于組織、點(diǎn)撥、引導(dǎo),促進(jìn)學(xué)生主動(dòng)探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主人。具體說(shuō)明如下:

(1)參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過(guò)程

學(xué)生前面,學(xué)習(xí)過(guò)線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問(wèn)題:在垂直平分線上任取一點(diǎn)P,它到線段兩端的距離有何關(guān)系?學(xué)生會(huì)很容易得出“相等”。然后學(xué)生完成證明,找一名學(xué)生的證明過(guò)程,進(jìn)行投影總結(jié)。最后,由學(xué)生將上述問(wèn)題,用文字的形式進(jìn)行歸納,即得線段垂直平分線定理。這樣讓學(xué)生親自動(dòng)手實(shí)踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識(shí)沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會(huì),對(duì)定理的產(chǎn)生過(guò)程,真正做到心領(lǐng)神會(huì)。

(2)采用“類比”的學(xué)習(xí)方法,獲取逆定理

線段垂直平分線的定理及逆定理的證明都比較簡(jiǎn)單,學(xué)生學(xué)習(xí)一般沒有什么困難,這一節(jié)的難點(diǎn)仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點(diǎn),教學(xué)時(shí)采用與角的平分線的性質(zhì)定理和逆定理對(duì)照,類比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識(shí)這兩個(gè)定理的區(qū)別和聯(lián)系。

(3) 通過(guò)問(wèn)題的解決,讓學(xué)生學(xué)會(huì)從不同角度分析問(wèn)題、解決問(wèn)題;讓學(xué)生學(xué)會(huì)引申、變更問(wèn)題,以培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、提出問(wèn)題的創(chuàng)造性能力。

人教版八年級(jí)下冊(cè)數(shù)學(xué)教案篇4

教學(xué)目標(biāo):

一、知識(shí)與技能

1、從現(xiàn)實(shí)情境和已有的知識(shí)、經(jīng)驗(yàn)出發(fā)、討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)、函數(shù)概念的理解。

2、經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念。

二、過(guò)程與方法

1、經(jīng)歷對(duì)兩個(gè)變量之間相依關(guān)系的討論,培養(yǎng)學(xué)生的辨別唯物主義觀點(diǎn)。

2、經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識(shí)。

三、情感態(tài)度與價(jià)值觀

1、經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,體會(huì)數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣。

2、通過(guò)分組討論,培養(yǎng)學(xué)生合作交流意識(shí)和探索精神。

教學(xué)重點(diǎn):理解和領(lǐng)會(huì)反比例函數(shù)的概念。

教學(xué)難點(diǎn):領(lǐng)悟反比例的概念。

教學(xué)過(guò)程:

一、創(chuàng)設(shè)情境,導(dǎo)入新課

活動(dòng)1

問(wèn)題:下列問(wèn)題中,變量間的對(duì)應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點(diǎn)?

(1)京滬線鐵路全程為1463km,乘坐某次列車所用時(shí)間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

(2)某住宅小區(qū)要種植一個(gè)面積為1000m2的矩形草坪,草坪的長(zhǎng)為y隨寬x的變化;

(3)已知北京市的總面積為1、68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化。

師生行為:

先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問(wèn)答或交流。學(xué)生用自己的語(yǔ)言說(shuō)明兩個(gè)變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達(dá)形式。

教師組織學(xué)生討論,提問(wèn)學(xué)生,師生互動(dòng)。

在此活動(dòng)中老師應(yīng)重點(diǎn)關(guān)注學(xué)生:

①能否積極主動(dòng)地合作交流。

②能否用語(yǔ)言說(shuō)明兩個(gè)變量間的關(guān)系。

③能否了解所討論的函數(shù)表達(dá)形式,形成反比例函數(shù)概念的具體形象。

分析及解答:

其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);

上面的函數(shù)關(guān)系式,都具有

的形式,其中k是常數(shù)。

二、聯(lián)系生活,豐富聯(lián)想

活動(dòng)2

下列問(wèn)題中,變量間的對(duì)應(yīng)關(guān)系可用這樣的函數(shù)式表示?

(1)一個(gè)游泳池的容積為20__m3,注滿游泳池所用的時(shí)間隨注水速度u的變化而變化;

(2)某立方體的體積為1000cm3,立方體的高h(yuǎn)隨底面積S的變化而變化;

(3)一個(gè)物體重100牛頓,物體對(duì)地面的壓力p隨物體與地面的接觸面積S的變化而變化。

師生行為

學(xué)生先獨(dú)立思考,在進(jìn)行全班交流。

教師操作課件,提出問(wèn)題,關(guān)注學(xué)生思考的過(guò)程,在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:

(1)能否從現(xiàn)實(shí)情境中抽象出兩個(gè)變量的函數(shù)關(guān)系;

(2)能否積極主動(dòng)地參與小組活動(dòng);

(3)能否比較深刻地領(lǐng)會(huì)函數(shù)、反比例函數(shù)的概念。

概念:如果兩個(gè)變量x,y之間的關(guān)系可以表示成

的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零。

活動(dòng)3

做一做:

一個(gè)矩形的面積為20cm2, 相鄰的兩條邊長(zhǎng)為xcm和ycm。那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

師生行為:

學(xué)生先進(jìn)行獨(dú)立思考,再進(jìn)行全班交流。教師提出問(wèn)題,關(guān)注學(xué)生思考。此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:

①生能否理解反比例函數(shù)的意義,理解反比例函數(shù)的概念;

②學(xué)生能否順利抽象反比例函數(shù)的模型;

③學(xué)生能否積極主動(dòng)地合作、交流;

活動(dòng)4

問(wèn)題1:下列哪個(gè)等式中的y是x的反比例函數(shù)?

問(wèn)題2:已知y是x的反比例函數(shù),當(dāng)x=2時(shí),y=6

(1)寫出y與x的函數(shù)關(guān)系式:

(2)求當(dāng)x=4時(shí),y的值。

師生行為:

學(xué)生獨(dú)立思考,然后小組合作交流。教師巡視,查看學(xué)生完成的情況,并給予及時(shí)引導(dǎo)。在此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:

①學(xué)生能否領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念;

②學(xué)生能否積極主動(dòng)地參與小組活動(dòng)。

分析及解答:

1、只有xy=123是反比例函數(shù)。

2、分析:因?yàn)閥是x的反比例函數(shù),所以,再把x=2和y=6代入上式就可求出常數(shù)k的值。

解:(1)設(shè),因?yàn)閤=2時(shí),y=6,所以有

解得k=12

因此

(2)把x=4代入,得

三、鞏固提高

活動(dòng)5

1、已知y是x的反比例函數(shù),并且當(dāng)x=3時(shí),y=8。

(1)寫出y與x之間的函數(shù)關(guān)系式。

(2)求y=2時(shí)x的值。

2、y是x的反比例函數(shù),下表給出了x與y的一些值:

(1)寫出這個(gè)反比例函數(shù)的表達(dá)式;

(2)根據(jù)函數(shù)表達(dá)式完成上表。

學(xué)生獨(dú)立練習(xí),而后再與同桌交流,上講臺(tái)演示,教師要重點(diǎn)關(guān)注“學(xué)困生”。

四、課時(shí)小結(jié)

反比例函數(shù)概念形成的過(guò)程中,大家充分利用已有的生活經(jīng)驗(yàn)和背景知識(shí),注意挖掘問(wèn)題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解。在概念的形成過(guò)程中,從感性認(rèn)識(shí)到理發(fā)認(rèn)識(shí)一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對(duì)象。反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過(guò)舉例、說(shuō)理、討論等活動(dòng),感知數(shù)學(xué)眼光,審視某些實(shí)際現(xiàn)象。

人教版八年級(jí)下冊(cè)數(shù)學(xué)教案篇5

一、教學(xué)目標(biāo)

(一)知識(shí)與技能:

(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。

(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。

(二)過(guò)程與方法:

(1)由學(xué)生自主探索解題途徑,在此過(guò)程中,通過(guò)觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。

(2)由整式乘法的逆運(yùn)算過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

(3)通過(guò)對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問(wèn)題能力與綜合應(yīng)用能力。

(三)情感態(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。

二、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):因式分解的概念及提公因式法。

難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

三、教學(xué)過(guò)程

教學(xué)環(huán)節(jié):

活動(dòng)1:復(fù)習(xí)引入

看誰(shuí)算得快:用簡(jiǎn)便方法計(jì)算:

(1)7/9 ×13-7/9 ×6+7/9 ×2= ;

(2)-2、67×132+25×2、67+7×2、67= ;

(3)992–1= 。

設(shè)計(jì)意圖:

如果說(shuō)學(xué)生對(duì)因式分解還相當(dāng)陌生的話,相信學(xué)生對(duì)用簡(jiǎn)便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉。引入這一步的目的旨在讓學(xué)生通過(guò)回顧用簡(jiǎn)便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過(guò)類比很自然地過(guò)渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺(tái)階。

注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過(guò)的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。

活動(dòng)2:導(dǎo)入課題

P165的探究(略);

2、看誰(shuí)想得快:993–99能被哪些數(shù)整除?你是怎么得出來(lái)的?

設(shè)計(jì)意圖:

引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。

活動(dòng)3:探究新知

看誰(shuí)算得準(zhǔn):

計(jì)算下列式子:

(1)3x(x-1)= ;

(2)(a+b+c)= ;

(3)(+4)(-4)= ;

(4)(-3)2= ;

(5)a(a+1)(a-1)= ;

根據(jù)上面的算式填空:

(1)a+b+c= ;

(2)3x2-3x= ;

(3)2-16= ;

(4)a3-a= ;

(5)2-6+9= 。

在第一組的整式乘法的計(jì)算上,學(xué)生通過(guò)對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過(guò)對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

活動(dòng)4:歸納、得出新知

比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:

a(a+1)(a-1)= a3-a

a3-a= a(a+1)(a-1)

在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

人教版八年級(jí)下冊(cè)數(shù)學(xué)教案篇6

教學(xué)內(nèi)容分析:

⑴ 學(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。

⑵前面學(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對(duì)正方形的研究。

⑶ 對(duì)本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識(shí)的聯(lián)系,類比的基礎(chǔ)上進(jìn)行歸納,梳理知識(shí),進(jìn)一步發(fā)展學(xué)生的推理能力。

學(xué)生分析:

⑴學(xué)生在小學(xué)初步認(rèn)識(shí)了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗(yàn)與知識(shí)基礎(chǔ)。

⑵學(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對(duì)于證明,學(xué)生的思維能力還不成熟,有待于提高。

教學(xué)目標(biāo):

⑴知識(shí)與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會(huì)利用性質(zhì)與判定進(jìn)行簡(jiǎn)單的說(shuō)理。

⑵過(guò)程與方法:通過(guò)類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過(guò)運(yùn)用提高學(xué)生的推理能力。

⑶情感態(tài)度與價(jià)值觀:在學(xué)習(xí)中體會(huì)正方形的完美性,通過(guò)活動(dòng)獲得成功的喜悅與自信。

重點(diǎn):

掌握正方形的性質(zhì)與判定,并進(jìn)行簡(jiǎn)單的推理。

難點(diǎn):

探索正方形的判定,發(fā)展學(xué)生的推理能

教學(xué)方法:

類比與探究

教具準(zhǔn)備:

可以活動(dòng)的四邊形模型。

教學(xué)過(guò)程:

一:復(fù)習(xí)鞏固,建立聯(lián)系。

【教師活動(dòng)】

問(wèn)題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?

②( ) 的四邊形是平行四邊形。( )的平行四邊形是矩形。( )的平行四邊形是菱形。( )的四邊形是矩形。( )的四邊形是菱形。

【學(xué)生活動(dòng)】

學(xué)生回憶,并舉手回答,對(duì)于填空題,讓更多的學(xué)生參與,說(shuō)出更多的答案。

【教師活動(dòng)】

評(píng)析學(xué)生的結(jié)果,給予表?yè)P(yáng)。

總結(jié)性質(zhì)從邊角對(duì)角線考慮,在填空時(shí)也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。

演示平行四邊形變?yōu)榫匦瘟庑蔚倪^(guò)程。

二:動(dòng)手操作,探索發(fā)現(xiàn)。

活動(dòng)一:拿出一張矩形紙片,拉起一角,使其寬AB落在長(zhǎng)AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?

【學(xué)生活動(dòng)】

學(xué)生拿出自備矩形紙片,動(dòng)手操作,不難發(fā)現(xiàn)它是正方形。

設(shè)置問(wèn)題:①什么是正方形?

觀察發(fā)現(xiàn),從活動(dòng)中體會(huì)。

【教師活動(dòng)】:演示矩形變?yōu)檎叫蔚倪^(guò)程,菱形變?yōu)檎叫蔚倪^(guò)程。

【學(xué)生活動(dòng)】認(rèn)真觀察變化過(guò)程,思考之間的聯(lián)系,舉手回答設(shè)置問(wèn)題。

設(shè)置問(wèn)題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

【學(xué)生活動(dòng)】

小組討論,分組回答。

【教師活動(dòng)】

總結(jié)板書:

㈠(一組鄰邊相等)的矩形是正方形,(一個(gè)角是直角)的菱形是正方形。

設(shè)置問(wèn)題③正方形有那些性質(zhì)?

【學(xué)生活動(dòng)】

小組討論,舉手搶答。

【教師活動(dòng)】

表?yè)P(yáng)學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),㈡正方形 每一條對(duì)角線平分一組對(duì)角

活動(dòng)二:拿出活動(dòng)一得到的正方形折一折,正方形是軸對(duì)稱圖形嗎?有幾條對(duì)稱軸?

學(xué)生活動(dòng)

折紙發(fā)現(xiàn),說(shuō)出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對(duì)稱圖形。

教師活動(dòng)

演示從平行四邊形變?yōu)檎叫蔚倪^(guò)程,擦去板書㈠中的括號(hào)內(nèi)容,出示一下問(wèn)題:你還可以怎樣填空?

( )的菱形是正方形,( )的矩形是正方形,( )的平行四邊形是正方形,( )的四邊形是正方形。

學(xué)生活動(dòng)

小組充分交流,表達(dá)不同的意見。

教師活動(dòng)

評(píng)析活動(dòng),總結(jié)發(fā)現(xiàn):

一組鄰邊相等的矩形是正方形,對(duì)角線互相平分的矩形是正方形;

有一個(gè)角是直角的菱形是正方形,對(duì)角線相等的菱形是正方形,;

有一組鄰邊相等且有一個(gè)角是直角的平行四邊形是正方形,對(duì)角線相等且互相平分的平行四邊形是正方形;

四邊相等且有一角是直角的四邊形是正方形,對(duì)角線相等且互相垂直平分的四邊形是正方形。

以上是正方形的`判定方法。

正方形是一個(gè)多么完美的平行四邊形呀?大家互相說(shuō)一說(shuō),它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?

學(xué)生交流,感受正方形

三,應(yīng)用體驗(yàn),推理證明。

出示例一:正方形ABCD的兩條對(duì)角線AC,BD交與O,AB長(zhǎng)4cm,求AC,AO長(zhǎng),及 的度數(shù)。

方法一解:∵四邊形ABCD是正方形

∴∠ABC=90°(正方形的四個(gè)角是直角)。

BC=AB=4cm(正方形的四條邊相等)

∴ =45°(等腰直角三角形的底角是45°)

∴利用勾股定理可知,AC= = =4 cm

∵AO= AC(正方形的對(duì)角線互相平分)

∴AO= ×4 =2 cm

方法二:證明△AOB是等腰直角三角形,即可得證。

學(xué)生活動(dòng)

獨(dú)立思考,寫出推理過(guò)程,再進(jìn)行小組討論,并且各小組指派代表寫在黑板上,共同交流。

教師活動(dòng)

總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評(píng)析解題步驟,表?yè)P(yáng)突出學(xué)生。

出示例二:在正方形ABCD中,E、F、G、H 分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

學(xué)生活動(dòng)

小組交流,分析題意,整理思路,指名口答。

教師活動(dòng)

說(shuō)明思路,從已知出發(fā)或者從已有的判定加以選擇。

四,歸納新知,梳理知識(shí)。

這一節(jié)課你有什么收獲?

學(xué)生舉手談?wù)撟约旱氖斋@。

請(qǐng)把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說(shuō)明它們的關(guān)系。

發(fā)表評(píng)論

人教版八年級(jí)下冊(cè)數(shù)學(xué)教案篇7

一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。

1、平移

2、平移的性質(zhì):

⑴經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等;

⑵對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。

⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。

(4)平移后的圖形與原圖形全等。

3、簡(jiǎn)單的平移作圖

①確定個(gè)圖形平移后的位置的條件:

⑴需要原圖形的位置;

⑵需要平移的方向;

⑶需要平移的距離或一個(gè)對(duì)應(yīng)點(diǎn)的位置。

②作平移后的圖形的方法:

⑴找出關(guān)鍵點(diǎn);

⑵作出這些點(diǎn)平移后的對(duì)應(yīng)點(diǎn);

⑶將所作的對(duì)應(yīng)點(diǎn)按原來(lái)方式順次連接,所得的;

二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角。

1、旋轉(zhuǎn)

2、旋轉(zhuǎn)的性質(zhì)

⑴旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段,對(duì)應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

⑵旋轉(zhuǎn)過(guò)程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度。

⑶任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。

⑷旋轉(zhuǎn)前后的兩個(gè)圖形全等。

3、簡(jiǎn)單的旋轉(zhuǎn)作圖

⑴已知原圖,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。

⑵已知原圖,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)線段,求作旋轉(zhuǎn)后的圖形。

⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。

三、分析組合圖案的形成

①確定組合圖案中的“基本圖案”

②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系

③探索該圖案的形成過(guò)程,類型有:

⑴平移變換;

⑵旋轉(zhuǎn)變換;

⑶軸對(duì)稱變換;

⑷旋轉(zhuǎn)變換與平移變換的組合;

⑸旋轉(zhuǎn)變換與軸對(duì)稱變換的組合;

⑹軸對(duì)稱變換與平移變換的組合。

1289655