浙教版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
知識(shí)經(jīng)濟(jì)的發(fā)展需要強(qiáng)有力的政策和資源支持,包括科技創(chuàng)新和人才培養(yǎng)等方面。知識(shí)創(chuàng)新的驅(qū)動(dòng)力可以來自多方面,例如市場需求、政策支持、學(xué)術(shù)領(lǐng)域等。以下是小編為大家?guī)淼恼憬贪娉踔袛?shù)學(xué)知識(shí)點(diǎn)總結(jié)筆記,歡迎參閱呀!
浙
教版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)筆記1、重心的定義:
平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時(shí)圖形能在水平面處于平衡狀態(tài),此時(shí)的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。
2、幾種幾何圖形的重心:
⑴線段的重心就是線段的中點(diǎn);
⑵平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點(diǎn);
⑶三角形的三條中線交于一點(diǎn),這一點(diǎn)就是三角形的重心;
⑷任意多邊形都有重心,以多邊形的任意兩個(gè)頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時(shí),過這兩點(diǎn)鉛垂線的交點(diǎn)就是這個(gè)多邊形的重心。
提示:⑴無論幾何圖形的形狀如何,重心都有且只有一個(gè);
⑵從物理學(xué)角度看,幾何圖形在懸掛或支撐時(shí),位于重心兩邊的力矩相同。
3、常見圖形重心的性質(zhì):
⑴線段的重心把線段分為兩等份;
⑵平行四邊形的重心把對角線分為兩等份;
⑶三角形的重心把中線分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對邊中點(diǎn)距離占1份)。
上面對重心知識(shí)點(diǎn)的鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識(shí)。
①直線和圓無公共點(diǎn),稱相離。 AB與圓O相離,d>r。
②直線和圓有兩個(gè)公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
③直線和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程
如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離;
數(shù)軸
規(guī)定了原點(diǎn)、正方向、單位長度的直線叫做數(shù)軸。
數(shù)軸的作用:所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來表達(dá)。
注意事項(xiàng):
⑴數(shù)軸的原點(diǎn)、正方向、單位長度三要素,缺一不可。
⑵同一根數(shù)軸,單位長度不能改變。
一般地,設(shè)是一個(gè)正數(shù),則數(shù)軸上表示a的點(diǎn)在原點(diǎn)的右邊,與原點(diǎn)的距離是a個(gè)單位長度;表示數(shù)-a的點(diǎn)在原點(diǎn)的左邊,與原點(diǎn)的距離是a個(gè)單位長度。
常用數(shù)學(xué)公式
乘法與因式分a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解x1=-b+√(b2-4ac)/2ax2=-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系X1+X2=-b/aX1__X2=c/a注:韋達(dá)定理
判別式
b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根
b2-4ac
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2p__2=2pyx2=-2py
直棱柱側(cè)面積S=c__h斜棱柱側(cè)面積S=c"__h
正棱錐側(cè)面積S=1/2c__h"正棱臺(tái)側(cè)面積S=1/2(c+c")h"圓臺(tái)側(cè)面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi__r2圓柱側(cè)面積S=c__h=2pi__h圓錐側(cè)面積S=1/2__c__l=pi__r__l
弧長公式l=a__ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2__l__r
錐體體積公式V=1/3__S__H圓錐體體積公式V=1/3__pi__r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側(cè)棱長柱體體積公式V=s__h圓柱體V=pi__r2h
1過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等
5過一點(diǎn)有且只有一條直線和已知直線垂直
6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯(cuò)角相等,兩直線平行11同旁內(nèi)角互補(bǔ),兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯(cuò)角相等14兩直線平行,同旁內(nèi)角互補(bǔ)
15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊
17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°18推論1直角三角形的兩個(gè)銳角互余
19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個(gè)三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對稱的兩個(gè)圖形是全等形
43定理2如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線
44定理3兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上
45逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對角線相等
62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等
該怎么提高數(shù)學(xué)課堂學(xué)習(xí)效率
課堂學(xué)習(xí)是學(xué)習(xí)過程中最基本,最重要的環(huán)節(jié),要堅(jiān)持做到“五到”即耳到、眼到、口到、心到、手到;
手到:就是以簡單扼要的方法記下聽課的要點(diǎn),思維方法,以備復(fù)習(xí)、消化、再思考,但要以聽課為主,記錄為輔;
耳到:專心聽講,聽老師如何講課,如何分析、如何歸納總結(jié).另外,還要聽同學(xué)們的解答,看是否對自己有所啟發(fā),特別要注意聽自己預(yù)習(xí)未看懂的問題;
口到:主動(dòng)與老師、同學(xué)們進(jìn)行合作、探究,敢于提出問題,并發(fā)表自己的看法,不要人云亦云;
眼到:就是一看老師講課的表情,手勢所表達(dá)的意思,看老師的演示實(shí)驗(yàn)、板書內(nèi)容,二看老師要求看的課本內(nèi)容,把書上知識(shí)與老師課堂講的知識(shí)聯(lián)系起來;
心到:就是課堂上要認(rèn)真思考,注意理解課堂的新知識(shí),課堂上的思考要主動(dòng)積極.關(guān)鍵是理解并能融匯貫通,靈活使用.對于老師講的新概念,應(yīng)抓住關(guān)鍵字眼,變換角度去理解.
數(shù)學(xué)復(fù)習(xí)方法學(xué)霸分享
1.重點(diǎn)練習(xí)幾種類型的題目
不要鉆偏題、怪題、過難題的牛角尖,根據(jù)平時(shí)做套卷時(shí)的感受,多練習(xí)以下幾個(gè)類型的題目。
(1)初看沒有思路,但分析后能順利做出的。通過對這類問題的練習(xí),能夠使我們對題目的考點(diǎn)和重點(diǎn)更熟悉,提高建立思路的速度和切入點(diǎn)的準(zhǔn)確度,讓我們能在考試中留出更多時(shí)間來處理后面難度高、閱讀量大的綜合題。
(2)自己經(jīng)常出錯(cuò)的中檔題。中檔題在中考中每年的考查內(nèi)容都差不多,題目位置也相對固定,屬于解決了一個(gè)板塊就能得到相應(yīng)版塊分?jǐn)?shù)的類型。在中檔題的某個(gè)題型經(jīng)常出錯(cuò)說明對這部分內(nèi)容的基本概念和常用方法理解不到位。通過練習(xí),多總結(jié)這類題目的解題思路和技巧,把不穩(wěn)定的得分變成到手的分?jǐn)?shù)。中檔題難度一般不會(huì)太高,所以對于自己薄弱的中檔題進(jìn)行突擊練習(xí)一般都會(huì)有很好的效果。
(3)基礎(chǔ)相對薄弱的同學(xué)也應(yīng)該做一些??嫉念}目類型。比如圓的切線的判定以及與圓相關(guān)的線段計(jì)算、一次函數(shù)和反比例函數(shù)的綜合、二元一次方程整數(shù)根問題等,通過練習(xí),進(jìn)一步提高我們解決這些問題的熟練度
2.學(xué)會(huì)看錯(cuò)題的正確方式
大部分學(xué)生都有錯(cuò)題本,在復(fù)習(xí)時(shí)看錯(cuò)題本,鞏固自己的錯(cuò)誤是不錯(cuò)的復(fù)習(xí)方式,但在看錯(cuò)題時(shí)一定要杜絕連題目帶答案一起順著看下來的方式。盡量能夠?qū)⒋鸢笓踝?,自己再嘗試做一遍,如果做的過程中遇到問題再去看答案,并做好標(biāo)注,過兩天再試做一遍,爭取能在期末考試前將之前的錯(cuò)題整體過兩到三遍、加深印象。
3.認(rèn)真研究每道題目的考點(diǎn)
做題時(shí),我們心中要對相應(yīng)題目所對應(yīng)的考點(diǎn)有所了解,比如填空題中如果出現(xiàn)幾何問題,主要是對圖形基本性質(zhì)和面積的考察,而很少考到全等三角形的證明(尺規(guī)作圖寫依據(jù)除外),所以我們在填空題中看到幾何問題,就不用從全等方面找突破口,而是更多地注重圖形的基本性質(zhì)。比如平行四邊形對角線互相平分、等腰三角形三線合一等。
4.盡量避免只看不算
很多同學(xué)在復(fù)習(xí)時(shí)不喜歡動(dòng)筆,覺得自己看明白了就行,但俗話說“眼過千遍不如手過一遍”,不去實(shí)際操作只是看一遍題目,對題目解法和思路的印象其實(shí)是很低的。而且在計(jì)算過程中還能鍛煉我們的計(jì)算能力,提高解題速度和準(zhǔn)確性。許多同學(xué)在寫證明題時(shí)很不熟練,邏輯不順暢,也是由于平時(shí)對書寫的不重視,應(yīng)該趁著期末考試前的時(shí)間,多練練書寫。
學(xué)好數(shù)學(xué)要重視“四個(gè)依據(jù)”是什么
讀好一本教科書——它是教學(xué)、考試的主要依據(jù);
記好一本筆記 ——它是教師多年經(jīng)驗(yàn)的結(jié)晶;
做好一本習(xí)題集——它是知識(shí)的拓寬;
記好一本心得筆記——它是你自己的知識(shí)。