文小秘 > 學(xué)習(xí)資料 > 學(xué)科資料 > 數(shù)學(xué) > 2021年高中數(shù)學(xué)知識(shí)點(diǎn)梳理

2021年高中數(shù)學(xué)知識(shí)點(diǎn)梳理

淑燕1147 分享 時(shí)間:

2021年高中數(shù)學(xué)知識(shí)點(diǎn)梳理大全

2021年高中數(shù)學(xué)知識(shí)點(diǎn)梳理有哪些?人們的生活中充滿了數(shù)學(xué),而數(shù)學(xué)的世界則需要人們努力的探索。從古到今,不管是中國(guó)還是外國(guó),涌現(xiàn)出了一批偉大的數(shù)學(xué)家。一起來(lái)看看2021年高中數(shù)學(xué)知識(shí)點(diǎn)梳理,歡迎查閱!

2021年高中數(shù)學(xué)知識(shí)點(diǎn)梳理

高中數(shù)學(xué)知識(shí)點(diǎn)大全

復(fù)數(shù)是高中代數(shù)的重要內(nèi)容,在高考試題中約占8%-10%,一般的出一道基礎(chǔ)題和一道中檔題,經(jīng)常與三角、解析幾何、方程、不等式等知識(shí)綜合.本章主要內(nèi)容是復(fù)數(shù)的概念,復(fù)數(shù)的代數(shù)、幾何、三角表示方法以及復(fù)數(shù)的運(yùn)算.方程、方程組,數(shù)形結(jié)合,分域討論,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想與方法在本章中有突出的體現(xiàn).而復(fù)數(shù)是代數(shù),三角,解析幾何知識(shí),相互轉(zhuǎn)化的樞紐,這對(duì)拓寬學(xué)生思路,提高學(xué)生解綜合習(xí)題能力是有益的.數(shù)、式的運(yùn)算和解方程,方程組,不等式是學(xué)好本章必須具有的基本技能.簡(jiǎn)化運(yùn)算的意識(shí)也應(yīng)進(jìn)一步加強(qiáng).

在本章學(xué)習(xí)結(jié)束時(shí),應(yīng)該明確對(duì)二次三項(xiàng)式的因式分解和解一元二次方程與二項(xiàng)方程可以畫(huà)上圓滿的句號(hào)了,對(duì)向量的運(yùn)算、曲線的復(fù)數(shù)形式的方程、復(fù)數(shù)集中的數(shù)列等邊緣性的知識(shí)還有待于進(jìn)一步的研究.

1.知識(shí)網(wǎng)絡(luò)圖

復(fù)數(shù)知識(shí)點(diǎn)網(wǎng)絡(luò)圖

2.復(fù)數(shù)中的難點(diǎn)

(1)復(fù)數(shù)的向量表示法的運(yùn)算.對(duì)于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對(duì)向量的運(yùn)算的幾何意義的靈活掌握有一定的困難.對(duì)此應(yīng)認(rèn)真體會(huì)復(fù)數(shù)向量運(yùn)算的幾何意義,對(duì)其靈活地加以證明.

(2)復(fù)數(shù)三角形式的乘方和開(kāi)方.有部分學(xué)生對(duì)運(yùn)算法則知道,但對(duì)其靈活地運(yùn)用有一定的困難,特別是開(kāi)方運(yùn)算,應(yīng)對(duì)此認(rèn)真地加以訓(xùn)練.

(3)復(fù)數(shù)的輻角主值的求法.

(4)利用復(fù)數(shù)的幾何意義靈活地解決問(wèn)題.復(fù)數(shù)可以用向量表示,同時(shí)復(fù)數(shù)的模和輻角都具有幾何意義,對(duì)他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會(huì).

3.復(fù)數(shù)中的重點(diǎn)

(1)理解好復(fù)數(shù)的概念,弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)的不同點(diǎn).

(2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準(zhǔn)確地求出復(fù)數(shù)的模和輻角.復(fù)數(shù)有代數(shù),向量和三角三種表示法.特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問(wèn)題時(shí)經(jīng)常用到,是一個(gè)重點(diǎn)內(nèi)容.

(3)復(fù)數(shù)的三種表示法的各種運(yùn)算,在運(yùn)算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì).復(fù)數(shù)的運(yùn)算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運(yùn)算,特別是復(fù)數(shù)運(yùn)算的幾何意義更是重點(diǎn)內(nèi)容.

(4)復(fù)數(shù)集中一元二次方程和二項(xiàng)方程的解法.

高中數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)

集合

()元素與集合的關(guān)系:屬于()和不屬于()1

2)集合中元素的特性:確定性、互異性、無(wú)序性集合與元素((3)集合的分類:按集合中元素的個(gè)數(shù)多少分為:有限集、無(wú)限集、空集

4)集合的表示方法:列舉法、描述法(自然語(yǔ)言描述、特征性質(zhì)描述)、圖示法、區(qū)間法(

子集:若xA xB,則AB,即A是B的子集。

1、若集合A中有n個(gè)元素,則集合A的子集有2n個(gè),真子集有(2n-1)個(gè)。

2、任何一個(gè)集合是它本身的子集,即 AA注

關(guān)系3、對(duì)于集合A,B,C,如果AB,且BC,那么AC.4、空集是任何集合的(真)子集。

真子集:若AB且AB(即至少存在x0B但x0A),則A是B的真子集。集合集合相等:AB且AB AB

集合與集合定義:ABx/xA且xB交集性質(zhì):AAA,A,ABBA,ABA,ABB,ABABA定義:ABx/xA或xB并集性質(zhì):AAA,AA,ABBA,ABA,ABB,ABABB運(yùn)算

Card(AB)Card(A)Card(B)-Card(AB)定義:CUAx/xU且xA補(bǔ)集性質(zhì):(CUA)A,(CUA)AU,CU(CUA)A,CU(AB)(CUA)(CUB), C(AB)(CA)(CB)UUU

函數(shù)

映射定義:設(shè)A,B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)關(guān)系,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:B為從集合A到集合B的一個(gè)映射

傳統(tǒng)定義:如果在某變化中有兩個(gè)變量x,y,并且對(duì)于x在某個(gè)范圍內(nèi)的每一個(gè)確定的值,

定義 按照某個(gè)對(duì)應(yīng)關(guān)系f,y都有唯一確定的值和它對(duì)應(yīng)。那么y就是x的函數(shù)。記作yf(x).

近代定義:函數(shù)是從一個(gè)數(shù)集到另一個(gè)數(shù)集的映射。定義域函數(shù)及其表示函數(shù)的三要素值域?qū)?yīng)法則

解析法函數(shù)的表示方法列表法

圖象法

傳統(tǒng)定義:在區(qū)間a,b上,若ax1x2b,如f(x1)f(x2),則f(x)在a,b上遞增,a,b是

遞增區(qū)間;如f(x1)f(x2),則f(x)在a,b上遞減,a,b是的遞減區(qū)間。單調(diào)性導(dǎo)數(shù)定義:在區(qū)間a,b上,若f(x)0,則f(x)在a,b上遞增,a,b是遞增區(qū)間;如f(x)0

a,b是的遞減區(qū)間。 則f(x)在a,b上遞減,

最大值:設(shè)函數(shù)yf(x)的定義域?yàn)镮,如果存在實(shí)數(shù)M滿足:(1)對(duì)于任意的xI,都有f(x)M;函數(shù) (2)存在x0I,使得f(x0)M。則稱M是函數(shù)yf(x)的最大值函數(shù)的基本性質(zhì)最值最小值:設(shè)函數(shù)yf(x)的定義域?yàn)镮,如果存在實(shí)數(shù)N滿足:(1)對(duì)于任意的xI,都有f(x)N; (2)存在x0I,使得f(x0)N。則稱N是函數(shù)yf(x)的最小值

(1)f(x)f(x),x定義域D,則f(x)叫做奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱。

奇偶性(2)f(x)f(x),x定義域D,則f(x)叫做偶函數(shù),其圖象關(guān)于y軸對(duì)稱。奇偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱

周期性:在函數(shù)f(x)的定義域上恒有f(xT)f(x)(T0的常數(shù))則f(x)叫做周期函數(shù),T為周期;

T的最小正值叫做f(x)的最小正周期,簡(jiǎn)稱周期

(1)描點(diǎn)連線法:列表、描點(diǎn)、連線向左平移個(gè)單位:y1y,x1axyf(xa)

向右平移a個(gè)單位:yy,xaxyf(xa)

平移變換向上平移b個(gè)單位:x1x,y1byybf(x)

11向下平移b個(gè)單位:__,y11byybf(x)

橫坐標(biāo)變換:把各點(diǎn)的橫坐標(biāo)x1縮短(當(dāng)w1時(shí))或伸長(zhǎng)(當(dāng)0w1時(shí))

到原來(lái)的1/w倍(縱坐標(biāo)不變),即x1wxyf(wx)

伸縮變換縱坐標(biāo)變換:把各點(diǎn)的縱坐標(biāo)y伸長(zhǎng)(A1)或縮短(0A1)到原來(lái)的A倍1函數(shù)圖象的畫(huà)法(橫坐

標(biāo)不變), 即y1y/Ayf(x)(__12x0x2x0x2)變換法12y0yf(2x0x)關(guān)于點(diǎn)(x0,y0)對(duì)稱:yy12y0y12y0y

__12x0x12x0x關(guān)于直線__0對(duì)稱:yf(2x0x)yy1y1y對(duì)稱變換__1__關(guān)于直線yy0對(duì)稱:12y0yf(x)yy2y10y12y0y__1關(guān)于直線yx對(duì)稱:yf1(x)yy1

附:

一、函數(shù)的定義域的常用求法:

1、分式的分母不等于零;2、偶次方根的被開(kāi)方數(shù)大于等于零;3、對(duì)數(shù)的真數(shù)大于零;4、指數(shù)

函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1;5、三角函數(shù)正切函數(shù)ytanx中xk

2

(kZ);余

切函數(shù)ycotx中;6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。

二、函數(shù)的解析式的常用求法:

1、定義法;2、換元法;3、待定系數(shù)法;4、函數(shù)方程法;5、參數(shù)法;6、配方法 三、函數(shù)的值域的常用求法:

1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調(diào)性法;7、直接法 四、函數(shù)的'最值的常用求法:

1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調(diào)性法 五、函數(shù)單調(diào)性的常用結(jié)論:

1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)g(x)在這個(gè)區(qū)間上也為增(減)函數(shù) 2、若f(x)為增(減)函數(shù),則f(x)為減(增)函數(shù)

3、若f(x)與g(x)的單調(diào)性相同,則yf[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則

yf[g(x)]是減函數(shù)。

4、奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反。

5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。 六、函數(shù)奇偶性的常用結(jié)論:

1、如果一個(gè)奇函數(shù)在x0處有定義,則f(0)0,如果一個(gè)函數(shù)yf(x)既是奇函數(shù)又是偶函數(shù),則f(x)0(反之不成立)

2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。 3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。

4、兩個(gè)函數(shù)yf(u)和ug(x)復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。 5、若函數(shù)

f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(x)可以表示為

11

f(x)[f(x)f(x)][f(x)f(x)],該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)

22

的和。

零點(diǎn):對(duì)于函數(shù)yf(x),我們把使f(x)0的實(shí)數(shù)x叫做函數(shù)yf(x)的零點(diǎn)。定理:如果函數(shù)yf(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)0,

零點(diǎn)與根的關(guān)系那么,函數(shù)yf(x)在區(qū)間[a,b]內(nèi)有零點(diǎn)。即存在c(a,b),使得f(c)0,這個(gè)c也是方

程f(x)0的根。(反之不成立)關(guān)系:方程f(x)0有實(shí)數(shù)根函數(shù)yf(x)有零點(diǎn)函數(shù)yf(x)的圖象與x軸有交點(diǎn)(1)確定區(qū)間[a,b],驗(yàn)證f(a)f(b)0,給定精確度;函數(shù)與方程(2)求區(qū)間(a,b)的中點(diǎn)c;函數(shù)的應(yīng)用(3)計(jì)算f(c);

二分法求方程的近似解 ①若f(c)0,則c就是函數(shù)的零點(diǎn);

②若f(a)f(c)0,則令b(此時(shí)零點(diǎn)cx(a,b));0③若f(c)f(b)0,則令a(此時(shí)零點(diǎn)cx(c,b));0

(4)判斷是否達(dá)到精確度:即若a-b,則得到零點(diǎn)的近似值a(或b);否則重復(fù)24。幾類不同的增長(zhǎng)函數(shù)模型函數(shù)模型及其應(yīng)用用已知函數(shù)模型解決問(wèn)題

建立實(shí)際問(wèn)題的函數(shù)模型

n為根指數(shù),a為被開(kāi)方數(shù)a分?jǐn)?shù)指數(shù)冪

arasars(a0,r,sQ)指數(shù)的運(yùn)算

rs指數(shù)函數(shù)rs性質(zhì)(a)a(a0,r,sQ)

(ab)rarbs(a0,b0,rQ)

定義:一般地把函數(shù)yax(a0且a1)叫做指數(shù)函數(shù)。指數(shù)函數(shù)性質(zhì):見(jiàn)表1

對(duì)數(shù):xlogaN,a為底數(shù),N為真數(shù)

loga(MN)logaMlogaN;基本初等函數(shù)

logaMlogaMlogaN;.N對(duì)數(shù)的運(yùn)算性質(zhì)

nnlogaM;(a0,a1,M0,N0)logaM對(duì)數(shù)函數(shù)

logcb

logab(a,c0且a,c1,b0)換底公式:logca

對(duì)數(shù)函數(shù)定義:一般地把函數(shù)ylogax(a0且a1)叫做對(duì)數(shù)函數(shù)性質(zhì):見(jiàn)表1

定義:一般地,函數(shù)yx叫做冪函數(shù),x是自變量,是常數(shù)。冪函數(shù)

性質(zhì):見(jiàn)表2

高中數(shù)學(xué)知識(shí)點(diǎn)大全

集合

一、集合概念

(1)集合中元素的特征:確定性,互異性,無(wú)序性。

(2)集合與元素的關(guān)系用符號(hào)=表示。

(3)常用數(shù)集的符號(hào)表示:自然數(shù)集;正整數(shù)集;整數(shù)集;有理數(shù)集、實(shí)數(shù)集。

(4)集合的表示法:列舉法,描述法,韋恩圖。

(5)空集是指不含任何元素的集合。

空集是任何集合的子集,是任何非空集合的真子集。

函數(shù)

一、映射與函數(shù):

(1)映射的概念:(2)一一映射:(3)函數(shù)的概念:

二、函數(shù)的三要素:

相同函數(shù)的判斷方法:①對(duì)應(yīng)法則;②定義域(兩點(diǎn)必須同時(shí)具備)

(1)函數(shù)解析式的求法:

①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:

(2)函數(shù)定義域的求法:

①含參問(wèn)題的定義域要分類討論;

②對(duì)于實(shí)際問(wèn)題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來(lái)確定。

(3)函數(shù)值域的求法:

①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來(lái)求值;常轉(zhuǎn)化為型如:的形式;

②逆求法(反求法):通過(guò)反解,用來(lái)表示,再由的取值范圍,通過(guò)解不等式,得出的取值范圍;常用來(lái)解,型如:;

④換元法:通過(guò)變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;

⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來(lái)求值域;

⑥基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來(lái)求值域;

⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。

⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來(lái)求值域。

三、函數(shù)的性質(zhì):

函數(shù)的單調(diào)性、奇偶性、周期性

單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。

判定方法有:定義法(作差比較和作商比較)

導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))

復(fù)合函數(shù)法和圖像法。

應(yīng)用:比較大小,證明不等式,解不等式。

奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);

f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。

判別方法:定義法,圖像法,復(fù)合函數(shù)法

應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。

周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。

其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.

應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。

四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。

常見(jiàn)圖像變化規(guī)律:(注意平移變化能夠用向量的語(yǔ)言解釋,和按向量平移聯(lián)系起來(lái)思考)

平移變換y=f(x)→y=f(x+a),y=f(x)+b

注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過(guò)平移得到函數(shù)y=f(2x+4)的圖象。

(ⅱ)會(huì)結(jié)合向量的平移,理解按照向量(m,n)平移的意義。

對(duì)稱變換y=f(x)→y=f(-x),關(guān)于y軸對(duì)稱

y=f(x)→y=-f(x),關(guān)于x軸對(duì)稱

y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對(duì)稱

y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對(duì)稱。(注意:它是一個(gè)偶函數(shù))

伸縮變換:y=f(x)→y=f(ωx),

y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。

一個(gè)重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱;

點(diǎn)擊查看:高中數(shù)學(xué)知識(shí)點(diǎn)

五、反函數(shù):

(1)定義:

(2)函數(shù)存在反函數(shù)的條件:

(3)互為反函數(shù)的定義域與值域的關(guān)系:

(4)求反函數(shù)的步驟:①將看成關(guān)于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫(xiě)出反函數(shù)的定義域(即的值域)。

(5)互為反函數(shù)的圖象間的關(guān)系:

(6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;

(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。

七、常用的初等函數(shù):

(1)一元一次函數(shù):

(2)一元二次函數(shù):

一般式

兩點(diǎn)式

頂點(diǎn)式

二次函數(shù)求最值問(wèn)題:首先要采用配方法,化為一般式,

有三個(gè)類型題型:

(1)頂點(diǎn)固定,區(qū)間也固定。如:

(2)頂點(diǎn)含參數(shù)(即頂點(diǎn)變動(dòng)),區(qū)間固定,這時(shí)要討論頂點(diǎn)橫坐標(biāo)何時(shí)在區(qū)間之內(nèi),何時(shí)在區(qū)間之外。

(3)頂點(diǎn)固定,區(qū)間變動(dòng),這時(shí)要討論區(qū)間中的參數(shù).

等價(jià)命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根

注意:若在閉區(qū)間討論方程有實(shí)數(shù)解的情況,可先利用在開(kāi)區(qū)間上實(shí)根分布的情況,得出結(jié)果,在令和檢查端點(diǎn)的情況。

(3)反比例函數(shù):

(4)指數(shù)函數(shù):

指數(shù)函數(shù):y=(a>o,a≠1),圖象恒過(guò)點(diǎn)(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a>1和0

(5)對(duì)數(shù)函數(shù):

對(duì)數(shù)函數(shù):y=(a>o,a≠1)圖象恒過(guò)點(diǎn)(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a>1和0

注意:

(1)比較兩個(gè)指數(shù)或?qū)?shù)的大小的基本方法是構(gòu)造相應(yīng)的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不相同時(shí)轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要注意與1比較或與0比較。


2021年高中數(shù)學(xué)知識(shí)點(diǎn)梳理相關(guān)文章:

2021高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)最新5篇

2021高考數(shù)學(xué)考點(diǎn)歸納大全

高中數(shù)學(xué)會(huì)考重點(diǎn)知識(shí)點(diǎn)詳細(xì)總結(jié)2021

高中高考最全數(shù)學(xué)知識(shí)點(diǎn)總結(jié)匯總2021

高中數(shù)學(xué)最新重要知識(shí)點(diǎn)匯總2021

高一數(shù)學(xué)期末知識(shí)要點(diǎn)整理2021

高中數(shù)學(xué)??家族e(cuò)知識(shí)點(diǎn)整理2021

高中高考數(shù)學(xué)必備知識(shí)點(diǎn)匯集2021

高一數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)要點(diǎn)總結(jié)2021

2021高等數(shù)學(xué)知識(shí)點(diǎn)梳理

848661