文小秘 > 學(xué)習(xí)資料 > 學(xué)科資料 > 數(shù)學(xué) > 高考數(shù)學(xué)必修四知識(shí)點(diǎn)

高考數(shù)學(xué)必修四知識(shí)點(diǎn)

國雄0 分享 時(shí)間:

高考數(shù)學(xué)必修四知識(shí)點(diǎn)大全

高三會(huì)教給我們奮斗,每個(gè)人都有無盡的潛力,每一個(gè)人都有無窮的提升空間,不經(jīng)過一年血戰(zhàn),也許我們永遠(yuǎn)發(fā)現(xiàn)不了自己身上蘊(yùn)藏的能量。接下來小編在這里給大家分享一些關(guān)于高考數(shù)學(xué)必修四知識(shí)點(diǎn),供大家學(xué)習(xí)和參考,希望對(duì)大家有所幫助。

高考數(shù)學(xué)必修四知識(shí)點(diǎn)

高考數(shù)學(xué)必修四知識(shí)點(diǎn)

一】

a(1)=a,a(n)為公差為r的等差數(shù)列

通項(xiàng)公式:

a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.

可用歸納法證明。

n=1時(shí),a(1)=a+(1-1)r=a。成立。

假設(shè)n=k時(shí),等差數(shù)列的通項(xiàng)公式成立。a(k)=a+(k-1)r

則,n=k+1時(shí),a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.

通項(xiàng)公式也成立。

因此,由歸納法知,等差數(shù)列的通項(xiàng)公式是正確的。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+(a+r)+...+[a+(n-1)r]

=na+r[1+2+...+(n-1)]

=na+n(n-1)r/2

同樣,可用歸納法證明求和公式。

a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列

通項(xiàng)公式:

a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).

可用歸納法證明等比數(shù)列的通項(xiàng)公式。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+ar+...+ar^(n-1)

=a[1+r+...+r^(n-1)]

r不等于1時(shí),

S(n)=a[1-r^n]/[1-r]

r=1時(shí),

S(n)=na.

同樣,可用歸納法證明求和公式。

二】

符合一定條件的動(dòng)點(diǎn)所形成的圖形,或者說,符合一定條件的點(diǎn)的全體所組成的集合,叫做滿足該條件的點(diǎn)的軌跡.

軌跡,包含兩個(gè)方面的問題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性).

【軌跡方程】就是與幾何軌跡對(duì)應(yīng)的代數(shù)描述。

一、求動(dòng)點(diǎn)的軌跡方程的基本步驟

⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);

⒉寫出點(diǎn)M的集合;

⒊列出方程=0;

⒋化簡方程為最簡形式;

⒌檢驗(yàn)。

二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

⒉定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

⒊相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

⒌交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

_譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟

①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);

③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;

④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

高考數(shù)學(xué)必修四學(xué)習(xí)方法

1.先看筆記后做作業(yè)。

有的同學(xué)感到,老師講過的,自己已經(jīng)聽得明明白白了。但是為什么你這么做有那么多困難呢?原因是學(xué)生對(duì)教師所說的理解沒有達(dá)到教師要求的水平。

因此,每天做作業(yè)之前,我們必須先看一下課本的相關(guān)內(nèi)容和當(dāng)天的課堂筆記。能否如此堅(jiān)持,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其是當(dāng)練習(xí)不匹配時(shí),老師通常沒有剛剛講過的練習(xí)類型,因此它們不能被比較和消化。如果你不重視這個(gè)實(shí)施,在很長一段時(shí)間內(nèi),會(huì)造成很大的損失。

2.做題之后加強(qiáng)反思。

學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。但使用現(xiàn)在做主題的解決問題的思路和方法。因此,我們應(yīng)該反思我們所做的每一個(gè)問題,并總結(jié)我們自己的收獲。

要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識(shí)成片,問題成串。日復(fù)一日,建立科學(xué)的網(wǎng)絡(luò)系統(tǒng)的內(nèi)容和方法。俗話說: 有錢難買回頭看 。做完作業(yè),回頭細(xì)看,價(jià)值極大。這一回顧,是學(xué)習(xí)過程中一個(gè)非常重要的環(huán)節(jié)。

高考數(shù)學(xué)必修四學(xué)習(xí)技巧

1、科學(xué)的預(yù)習(xí)方法

預(yù)習(xí)中發(fā)現(xiàn)的難點(diǎn),就是聽課的重點(diǎn);對(duì)預(yù)習(xí)中遇到的沒有掌握好的有關(guān)的舊知識(shí),可進(jìn)行補(bǔ)缺,以減聽課過程中的困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;預(yù)習(xí)后將課本的例題及老師要講授的習(xí)題提前完成,還可以培養(yǎng)自己的自學(xué)能力,與老師的方法進(jìn)行比較,可以發(fā)現(xiàn)更多的方法與技巧。總之,這樣會(huì)使你的聽課更加有的放矢,你會(huì)知道哪些該重點(diǎn)聽,哪些該重點(diǎn)記。

2、科學(xué)的聽課方式

聽課的過程不是一個(gè)被動(dòng)參預(yù)的過程,要全身心地投入課堂學(xué)習(xí),耳到、眼到、心到、口到、手到。還要想在老師前面,不斷思考:面對(duì)這個(gè)問題我會(huì)怎么想?當(dāng)老師講解時(shí),又要思考:老師為什么這樣想?這里用了什么思想方法?這樣做的目的是什么?這個(gè)題有沒有更好的方法?問題多了,思路自然就開闊了。

3、科學(xué)的記錄筆記

記問題--將課堂上未聽懂的問題及時(shí)記下來,便于課后請(qǐng)教同學(xué)或老師,把問題弄懂弄通。

記疑點(diǎn)--對(duì)老師在課堂上講的內(nèi)容有疑問應(yīng)及時(shí)記下,這類疑點(diǎn),有可能是自己理解錯(cuò)造成的,也有可能是老師講課疏忽大意造成的,記下來后,便于課后與老師商榷。

記方法--勤記老師講的解題技巧、思路及方法,這對(duì)于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對(duì)提高解題水平大有益處。

記總結(jié)--注意記住老師的課后總結(jié),這對(duì)于濃縮一堂課的內(nèi)容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找存在問題、找到規(guī)律,融會(huì)貫通課堂內(nèi)容都很有作用。


高考數(shù)學(xué)必修四知識(shí)點(diǎn)相關(guān)文章:

高中數(shù)學(xué)基本知識(shí)點(diǎn)大全總結(jié)

高中高考最全數(shù)學(xué)知識(shí)點(diǎn)總結(jié)匯總2021

高考數(shù)學(xué)知識(shí)點(diǎn)大全

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納五篇分享

高中高考數(shù)學(xué)必備知識(shí)點(diǎn)匯集2021

2021高考數(shù)學(xué)考點(diǎn)歸納大全

數(shù)學(xué)高考知識(shí)點(diǎn)

2020高考數(shù)學(xué)知識(shí)點(diǎn)精選

數(shù)學(xué)高考知識(shí)點(diǎn)歸納

873994