數(shù)學必修二圓的方程知識點總結
學習數(shù)學的好習慣之一是建立良好的學習數(shù)學習慣,會使自己學習感到有序而輕松。高中數(shù)學的良好習慣應是:多質(zhì)疑、勤思考、好動手、重歸納、注意應用。下面是小編整理的數(shù)學必修二圓的方程知識點總結,僅供參考希望能夠幫助到大家。
數(shù)學必修二圓的方程知識點總結
圓的方程
1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標準方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點;當時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;
當時,兩圓內(nèi)含;當時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
數(shù)學如何預習
上課前對即將要上的數(shù)學內(nèi)容進行閱讀,做到心中有數(shù),以便于掌握聽課的主動權。這樣有利于提高學習能力和養(yǎng)成自學的習慣,所以它是數(shù)學學習中的重要一環(huán)。
(1)看書要動筆。(不動筆墨不讀書)
①一般采用邊閱讀、邊思考、邊書寫的方式,把內(nèi)容的要點、層次、聯(lián)系劃出來或打上記號,寫下自己的看法或在弄不懂的地方與問題上做記號;
②預習時一旦發(fā)現(xiàn)舊知識掌握得不好,甚至不理解時,就要及時翻書查閱摘抄,采取措施補上,為順利學習新內(nèi)容創(chuàng)造條件。
③了解本節(jié)課的基本內(nèi)容,也就是知道要講些什么,要解決什么問題,采取什么方法,重點關鍵在哪里等等。
④要把某一本練習冊所對應的章節(jié)拿出來大致看一遍,看哪些題一下能看會,哪些題根本看不懂,然后帶著疑問去聽課。
成數(shù)概念
一數(shù)為另一數(shù)的幾成,泛指比率:應在生產(chǎn)組內(nèi)找標準勞動力,互相比較,評成數(shù)。
表示一個數(shù)是另一個數(shù)的十分之幾的數(shù),叫做成數(shù)。
通常用在工農(nóng)業(yè)生產(chǎn)中表示生產(chǎn)的增長狀況。幾成就是十分之幾。
例如,糧食產(chǎn)量增產(chǎn)“二成”。
“二成”即是十分之二,也就是糧食產(chǎn)量增加了20%。
在計算成數(shù)時,設有甲、乙兩數(shù),求乙數(shù)對于甲數(shù)的比,并把比值化成純小數(shù),那么所得的純小數(shù)叫做乙數(shù)對于甲數(shù)的成數(shù)。其中小數(shù)第一位叫做“成”或“分”,第二位叫做“厘”。
例如,計劃糧食產(chǎn)量為5萬斤,實際多產(chǎn)了1萬斤,那么糧食增產(chǎn)的成數(shù)是1÷5=0.2,即糧食增產(chǎn)了二成。
成數(shù)與其他數(shù)的互化
方法:分數(shù)X10=成數(shù)成數(shù)/10=小數(shù)(成數(shù)除以10等于小數(shù))成數(shù)X10=百分數(shù)
數(shù)學必修二圓的方程知識點總結相關文章:
數(shù)學必修二圓的方程知識點總結




