必修一數(shù)學(xué)集合知識(shí)點(diǎn)
集合是指具有某種特定性質(zhì)的具體的或抽象的對(duì)象匯總而成的集體。其中,構(gòu)成集合的這些對(duì)象則稱為該集合的元素。下面是小編整理的必修一數(shù)學(xué)集合知識(shí)點(diǎn),僅供參考希望能夠幫助到大家。
必修一數(shù)學(xué)集合知識(shí)點(diǎn)
1.集合的有關(guān)概念。
1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素
注意:①集合與集合的元素是兩個(gè)不同的概念,教科書中是通過描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個(gè)集合)。
③集合具有兩方面的意義,即:凡是符合條件的對(duì)象都是它的元素;只要是它的元素就必須符號(hào)條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:N,Z,Q,R,Nx
2.子集、交集、并集、補(bǔ)集、空集、全集等概念。
1)子集:若對(duì)x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)補(bǔ)集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,則? A ;
②若 , ,則 ;
③若 且 ,則A=B(等集)
3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語(yǔ)和符號(hào),特別要注意以下的符號(hào):(1) 與 、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。
4.有關(guān)子集的幾個(gè)等價(jià)關(guān)系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并集運(yùn)算的性質(zhì)
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的個(gè)數(shù):設(shè)集合A的元素個(gè)數(shù)是n,則A有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。
二.例題講解:
【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關(guān)系
A) M=N P B) M N=P C) M N P D) N P M
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對(duì)于集合M:{x|x= ,m∈Z};對(duì)于集合N:{x|x= ,n∈Z}
對(duì)于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以M N=P,故選B。
分析二:簡(jiǎn)單列舉集合中的元素。
解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時(shí)不要急于判斷三個(gè)集合間的關(guān)系,應(yīng)分析各集合中不同的元素。
= ∈N, ∈N,∴M N,又 = M,∴M N,
= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。
點(diǎn)評(píng):由于思路二只是停留在最初的歸納假設(shè),沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設(shè)集合 , ,則( B )
A.M=N B.M N C.N M D.
解:
當(dāng) 時(shí),2k+1是奇數(shù),k+2是整數(shù),選B
【例2】定義集合AxB={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則AxB的子集個(gè)數(shù)為
A)1 B)2 C)3 D)4
分析:確定集合AxB子集的個(gè)數(shù),首先要確定元素的個(gè)數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個(gè)來求解。
解答:∵AxB={x|x∈A且x B}, ∴AxB={1,7},有兩個(gè)元素,故AxB的子集共有22個(gè)。選D
數(shù)學(xué)兩個(gè)平面的位置關(guān)系知識(shí)點(diǎn)
(1)兩個(gè)平面互相平行的定義:空間兩平面沒有公共點(diǎn)
(2)兩個(gè)平面的位置關(guān)系:
兩個(gè)平面平行——沒有公共點(diǎn);兩個(gè)平面相交——有一條公共直線。
a、平行
兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。
兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。
b、相交
二面角
(1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個(gè)半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個(gè)平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直
兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)
學(xué)好數(shù)學(xué)的學(xué)習(xí)方法和學(xué)習(xí)習(xí)慣
1、做好課前預(yù)習(xí),掌握聽課主動(dòng)權(quán)。課前準(zhǔn)備的好壞,直接影響聽課的效果。
2、專心聽講,做好課堂筆記。
3、及時(shí)復(fù)習(xí),把知識(shí)轉(zhuǎn)化為技能。
4、認(rèn)真完成作業(yè),形成技能技巧,提高分析解決問題的能力。
5、及時(shí)進(jìn)行小結(jié),把所學(xué)知識(shí)條理化、系統(tǒng)化。
因此,今后還要保持“先預(yù)習(xí)、后聽講;先復(fù)習(xí)、后作業(yè);經(jīng)常進(jìn)行階段小結(jié)”的好習(xí)慣。
必修一數(shù)學(xué)集合知識(shí)點(diǎn)相關(guān)文章:
★ 最新高一數(shù)學(xué)知識(shí)點(diǎn)整理歸納5篇
★ 高中高考數(shù)學(xué)必備知識(shí)點(diǎn)匯集2021
★ 高一數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)歸納
★ 高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)五篇
★ 高考數(shù)學(xué)必考知識(shí)歸納整理大全
★ 高一年級(jí)數(shù)學(xué)必修五知識(shí)點(diǎn)最新歸納2021
★ 2021必修三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)精選歸納5篇