高考數(shù)學(xué)必考考點(diǎn)
高考數(shù)學(xué)必考考點(diǎn)匯總
高考競爭異常激烈,千軍萬馬爭過獨(dú)木橋,秋天到了,而你正以凌厲的步伐邁進(jìn)這段特別的歲月中,你復(fù)習(xí)好了嗎?下面是小編為大家整理的關(guān)于高考數(shù)學(xué)必考考點(diǎn),希望對您有所幫助。歡迎大家閱讀參考學(xué)習(xí)!
高三數(shù)學(xué)必考知識點(diǎn)
不等式的解集:
①能使不等式成立的未知數(shù)的值,叫做不等式的解。
②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
新一輪中考復(fù)習(xí)備考周期正式開始,_小編為各位初三考生整理了各學(xué)科的復(fù)習(xí)攻略,主要包括中考必考點(diǎn)、中考??贾R點(diǎn)、各科復(fù)習(xí)方法、考試答題技巧等內(nèi)容,幫助各位考生梳理知識脈絡(luò),理清做題思路,希望各位考生可以在考試中取得優(yōu)異成績!下面是《2018中考數(shù)學(xué)知識點(diǎn):不等式的判定》,僅供參考!
不等式的判定:
①常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
②在不等式“a>b”或“a
③不等號的開口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;
④在列不等式時,一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。
高考不等式知識點(diǎn)
不等式分類:
不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)“≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(_,y,……,z)≤G(_,y,……,z)(其中不等號也可以為<,≥,>中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個命題,也可以表示一個問題。
高考數(shù)學(xué)必考知識點(diǎn)
變化前的點(diǎn)坐標(biāo)(_,y)
坐標(biāo)變化
變化后的點(diǎn)坐標(biāo)
圖形變化平移橫坐標(biāo)不變,縱坐標(biāo)加上(或減去)n(n>0)個單位長度
(_,y+n)或(_,y-n)
圖形向上(或向下)平移了n個單位長度
縱坐標(biāo)不變,橫坐標(biāo)加上(或減去)n(n>0)個單位長度
(_+n,y)或(_-n,y)
圖形向右(或向左)平移了n個單位長度伸長橫坐標(biāo)不變,縱坐標(biāo)擴(kuò)大n(n>1)倍(_,ny)圖形被縱向拉長為原來的n倍
縱坐標(biāo)不變,橫坐標(biāo)擴(kuò)大n(n>1)倍(n_,y)圖形被橫向拉長為原來的n倍壓縮橫坐標(biāo)不變,縱坐標(biāo)縮小n(n>1)倍(_,)圖形被縱向縮短為原來的
縱坐標(biāo)不變,橫坐標(biāo)縮小n(n>1)倍(,y)圖形被橫向縮短為原來的放大橫縱坐標(biāo)同時擴(kuò)大n(n>1)倍(n_,ny)圖形變?yōu)樵瓉淼膎2倍縮小橫縱坐標(biāo)同時縮小n(n>1)倍(,)圖形變?yōu)樵瓉淼?/p>
78、求與幾何圖形聯(lián)系的特殊點(diǎn)的坐標(biāo),往往是向_軸或y軸引垂線,轉(zhuǎn)化為求線段的長,再根據(jù)點(diǎn)所在的象限,醒上相應(yīng)的符號。求坐標(biāo)分兩種情況:(1)求交點(diǎn),如直線與直線的交點(diǎn);(2)求距離,再將距離換算成坐標(biāo),通常作_軸或y軸的垂線,再解直角三角形。
數(shù)學(xué)概率
1、基本概念:
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機(jī)事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例
fn(A)=為事件A出現(xiàn)的概率:對于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個事件的概率
3.1.3概率的基本性質(zhì)
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;
(4)當(dāng)事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性質(zhì):
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當(dāng)事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);
3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。
3.2.1—3.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生
1、(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事件數(shù);
②求出事件A所包含的基本事件數(shù),然后利用公式P(A)
3.3.1—3.3.2幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生
1、基本概念:
(1)幾何概率模型:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;
(2)幾何概型的概率公式:
P(A)=
(3)幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.
高考數(shù)學(xué)必考考點(diǎn)相關(guān)文章:
★ 數(shù)學(xué)必考知識點(diǎn)總結(jié)高三
★ 高三數(shù)學(xué)重點(diǎn)復(fù)習(xí)必考知識點(diǎn)整理精選5篇
★ 2020高三數(shù)學(xué)必考知識點(diǎn)復(fù)習(xí)總結(jié)5篇
★ 2020高三必考數(shù)學(xué)知識點(diǎn)歸納大全
★ 2020高中數(shù)學(xué)必考知識點(diǎn)復(fù)習(xí)梳理5篇精選
★ 2021高考數(shù)學(xué)必修必考知識點(diǎn)歸納總結(jié)