初一數(shù)學重要知識點
其實學得越多,懂得越多,想得越多,領(lǐng)悟得就越多,就像滴水一樣,一滴水或許很快就會被太陽蒸發(fā),但如果滴水不停的滴,就會變成一個水溝,越來越多,越來越多……下面小編為大家?guī)沓跻粩?shù)學重要知識點,希望對您有所幫助!
初一數(shù)學重要知識點
(一)正負數(shù)
1.正數(shù):大于0的數(shù)。
2.負數(shù):小于0的數(shù)。
3.0即不是正數(shù)也不是負數(shù)。
4.正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。
(二)有理數(shù)
1.有理數(shù):由整數(shù)和分數(shù)組成的數(shù)。包括:正整數(shù)、0、負整數(shù),正分數(shù)、負分數(shù)??梢詫懗蓛蓚€整之比的形式。(無理數(shù)是不能寫成兩個整數(shù)之比的形式,它寫成小數(shù)形式,小數(shù)點后的數(shù)字是無限不循環(huán)的。如:π)
2.整數(shù):正整數(shù)、0、負整數(shù),統(tǒng)稱整數(shù)。
3.分數(shù):正分數(shù)、負分數(shù)。
(三)數(shù)軸
1.數(shù)軸:用直線上的點表示數(shù),這條直線叫做數(shù)軸。(畫一條直線,在直線上任取一點表示數(shù)0,這個零點叫做原點,規(guī)定直線上從原點向右或向上為正方向;選取適當?shù)拈L度為單位長度,以便在數(shù)軸上取點。)
2.數(shù)軸的三要素:原點、正方向、單位長度。
3.相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)還是0。
4.絕對值:正數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù);0的絕對值是0,兩個負數(shù),絕對值大的反而小。
(四)有理數(shù)的加減法
1.先定符號,再算絕對值。
2.加法運算法則:同號相加,到相同符號,并把絕對值相加。異號相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。一個數(shù)同0相加減,仍得這個數(shù)。
3.加法交換律:a+b=b+a兩個數(shù)相加,交換加數(shù)的位置,和不變。
4.加法結(jié)合律:(a+b)+c=a+(b+c)三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。5.a?b=a+(?b)減去一個數(shù),等于加這個數(shù)的相反數(shù)。
(五)有理數(shù)乘法(先定積的符號,再定積的大小)
1.同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。
2.乘積是1的兩個數(shù)互為倒數(shù)。
3.乘法交換律:ab=ba
4.乘法結(jié)合律:(ab)c=a(bc)
5.乘法分配律:a(b+c)=ab+ac
(六)有理數(shù)除法
1.先將除法化成乘法,然后定符號,最后求結(jié)果。
2.除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
3.兩數(shù)相除,同號得正,異號得負,并把絕對值相除,0除以任何一個不等于0的數(shù),都得0。(七)乘方1.求n個相同因數(shù)的積的運算,叫做乘方。寫作an。(乘方的結(jié)果叫冪,a叫底數(shù),n叫指數(shù))2.負數(shù)的奇數(shù)次冪是負數(shù),負數(shù)的偶次冪是正數(shù);0的任何正整數(shù)次冪都是0。3.同底數(shù)冪相乘,底不變,指數(shù)相加。
4.同底數(shù)冪相除,底不變,指數(shù)相減。
(八)有理數(shù)的加減乘除混合運算法則
1.先乘方,再乘除,最后加減。
2.同級運算,從左到右進行。
3.如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。
(九)科學記數(shù)法、近似數(shù)、有效數(shù)字。
初一數(shù)學必考知識點
一、方程的有關(guān)概念
1.方程:含有未知數(shù)的等式就叫做方程.
2.一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.
注:⑴方程的解和解方程是不同的概念,方程的解實質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程.⑵方程的解的檢驗方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.
二、等式的性質(zhì)
等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等.
等式的性質(zhì)(1)用式子形式表示為:如果a=b,那么a±c=b±c
等式的性質(zhì)(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,等式的性質(zhì)(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項.
四、去括號法則
1.括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.
2.括號外的因數(shù)是負數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.
五、解方程的一般步驟
1.去分母(方程兩邊同乘各分母的最小公倍數(shù))
2.去括號(按去括號法則和分配律)
3.移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)
4.合并(把方程化成ax=b(a≠0)形式)
5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=a(b).
六、用方程思想解決實際問題的一般步驟
1.審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系.
2.設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)
3.列:根據(jù)題意列方程.
4.解:解出所列方程.
5.檢:檢驗所求的解是否符合題意.
6.答:寫出答案(有單位要注明答案)
初一數(shù)學知識點
角
1.角的定義:有公共端點的兩條射線組成的圖形叫角。這個公共端點是角的頂點,兩條射線為角的兩邊。
2.角有以下的表示方法:
(1)用三個大寫字母及符號“∠”表示.三個大寫字母分別是頂點和兩邊上的任意點,頂點的字母必須寫在中間。
(2)用一個大寫字母表示.這個字母就是頂點.當有兩個或兩個以上的角是同一個頂點時,不能用一個大寫字母表示。
(3)用一個數(shù)字或一個希臘字母表示.在角的內(nèi)部靠近角的頂點處畫一弧線,寫上希臘字母或數(shù)字.如圖的兩個角,分別記作∠α、∠1。
3.以度、分、秒為單位的角的度量制,叫做角度制。角的度、分、秒是60進制的。1度=60分,1分=60秒,1周角=360度,1平角=180度。
4.角的平分線:一般地,從一個角的頂點出發(fā),把這個角分成兩個相等的角的射線,叫做這個角的平分線。
5.如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角;如果兩個角的和等于180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。
6.同角(等角)的補角相等;同角(等角)的余角相等。
初一數(shù)學知識點歸納
圖形初步認識
1.我們把實物中抽象的各種圖形統(tǒng)稱為幾何圖形。
2.有些幾何圖形(如長方體.正方體.圓柱.圓錐.球等)的各部分不都在同一平面內(nèi),它們是立體圖形。
3.有些幾何圖形(如線段.角.三角形.長方形.圓等)的各部分都在同一平面內(nèi),它們是平面圖形。
4.將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應(yīng)立體圖形的展開圖。
5.幾何體簡稱為體。
6.包圍著體的是面,面有平的面和曲的面兩種。
7.面與面相交的地方形成線,線和線相交的地方是點。
8.點動成面,面動成線,線動成體。
9.經(jīng)過探究可以得到一個基本事實:經(jīng)過兩點有一條直線,并且只有一條直線。簡述為:兩點確定一條直線(公理)。
10.當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。
11.點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點。
12.經(jīng)過比較,我們可以得到一個關(guān)于線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)
13.連接兩點間的線段的長度,叫做這兩點的距離。
整式的加減
1.都是數(shù)或字母的積的式子叫做單項式,單獨的一個數(shù)或一個字母也是單項式。
2.單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。
3.一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
4.幾個單項的和叫做多項式,其中,每個單項式叫做多項式的項,不含字母的項叫做常數(shù)項。
5.多項式里次數(shù)項的次數(shù),叫做這個多項式的次數(shù)。
6.把多項式中的同類項合并成一項,叫做合并同類項。
合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變。
7.如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同。
8.如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。
9.一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。
初一數(shù)學知識點總結(jié)
多項式除以單項式
一、單項式
1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項式。
2、單項式的數(shù)字因數(shù)叫做單項式的系數(shù)。
3、單項式中所有字母的指數(shù)和叫做單項式的次數(shù)。
4、單獨一個數(shù)或一個字母也是單項式。
5、只含有字母因式的單項式的系數(shù)是1或―1。
6、單獨的一個數(shù)字是單項式,它的系數(shù)是它本身。
7、單獨的一個非零常數(shù)的次數(shù)是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數(shù)包括它前面的符號。
10、單項式的系數(shù)是帶分數(shù)時,應(yīng)化成假分數(shù)。
11、單項式的系數(shù)是1或―1時,通常省略數(shù)字“1”。
12、單項式的次數(shù)僅與字母有關(guān),與單項式的系數(shù)無關(guān)。
二、多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數(shù)項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。
7、多項式中次數(shù)的項的次數(shù),叫做這個多項式的次數(shù)。
三、整式
1、單項式和多項式統(tǒng)稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數(shù)式不是整式;而是今后將要學習的分式。
四、整式的加減
1、整式加減的理論根據(jù)是:去括號法則,合并同類項法則,以及乘法分配率。
2、幾個整式相加減,關(guān)鍵是正確地運用去括號法則,然后準確合并同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數(shù)式:用括號把每個整式括起來,再用加減號連接。
(2)按去括號法則去括號。
(3)合并同類項。
4、代數(shù)式求值的一般步驟:
(1)代數(shù)式化簡。
(2)代入計算
(3)對于某些特殊的代數(shù)式,可采用“整體代入”進行計算。
五、同底數(shù)冪的乘法
1、n個相同因式(或因數(shù))a相乘,記作an,讀作a的n次方(冪),其中a為底數(shù),n為指數(shù),an的結(jié)果叫做冪。
2、底數(shù)相同的冪叫做同底數(shù)冪。
3、同底數(shù)冪乘法的運算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。即:am﹒an=am+n。
4、此法則也可以逆用,即:am+n=am﹒an。
5、開始底數(shù)不相同的冪的乘法,如果可以化成底數(shù)相同的冪的乘法,先化成同底數(shù)冪再運用法則。
六、冪的乘方
1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。
2、冪的乘方運算法則:冪的乘方,底數(shù)不變,指數(shù)相乘。(am)n=amn。
3、此法則也可以逆用,即:amn=(am)n=(an)m。
七、積的乘方
1、積的乘方是指底數(shù)是乘積形式的乘方。
2、積的乘方運算法則:積的乘方,等于把積中的每個因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。
3、此法則也可以逆用,即:anbn=(ab)n。
八、三種“冪的運算法則”異同點
1、共同點:
(1)法則中的底數(shù)不變,只對指數(shù)做運算。
(2)法則中的底數(shù)(不為零)和指數(shù)具有普遍性,即可以是數(shù),也可以是式(單項式或多項式)。
(3)對于含有3個或3個以上的運算,法則仍然成立。
2、不同點:
(1)同底數(shù)冪相乘是指數(shù)相加。
(2)冪的乘方是指數(shù)相乘。
(3)積的乘方是每個因式分別乘方,再將結(jié)果相乘。
九、同底數(shù)冪的除法
1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即:am÷an=am-n(a≠0)。
2、此法則也可以逆用,即:am-n=am÷an(a≠0)。
十、零指數(shù)冪
1、零指數(shù)冪的意義:任何不等于0的數(shù)的0次冪都等于1,即:a0=1(a≠0)。
十一、負指數(shù)冪
1、任何不等于零的數(shù)的―p次冪,等于這個數(shù)的p次冪的倒數(shù),即:
注:在同底數(shù)冪的除法、零指數(shù)冪、負指數(shù)冪中底數(shù)不為0。
十二、整式的乘法
(一)單項式與單項式相乘
1、單項式乘法法則:單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,其余字母連同它的指數(shù)不變,作為積的因式。
2、系數(shù)相乘時,注意符號。
3、相同字母的冪相乘時,底數(shù)不變,指數(shù)相加。
4、對于只在一個單項式中含有的字母,連同它的指數(shù)一起寫在積里,作為積的因式。
5、單項式乘以單項式的結(jié)果仍是單項式。
6、單項式的乘法法則對于三個或三個以上的單項式相乘同樣適用。
(二)單項式與多項式相乘
1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據(jù)分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。
2、運算時注意積的符號,多項式的每一項都包括它前面的符號。
3、積是一個多項式,其項數(shù)與多項式的項數(shù)相同。
4、混合運算中,注意運算順序,結(jié)果有同類項時要合并同類項,從而得到最簡結(jié)果。
(三)多項式與多項式相乘
1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合并同類項之前,積的項數(shù)等于兩個多項式項數(shù)的積。
3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應(yīng)用“同號得正,異號得負”。
4、運算結(jié)果中有同類項的要合并同類項。
5、對于含有同一個字母的一次項系數(shù)是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。