初中生數(shù)學(xué)中考復(fù)習(xí)知識(shí)點(diǎn)總結(jié)

彭永0 分享 時(shí)間:

相信很多人都在為數(shù)學(xué)中考知識(shí)點(diǎn)發(fā)愁,在我們的學(xué)習(xí)時(shí)代,大家都背過各種知識(shí)點(diǎn)吧?知識(shí)點(diǎn)在教育實(shí)踐中,是指對(duì)某一個(gè)知識(shí)的泛稱。下面是小編給大家整理的初中生數(shù)學(xué)中考復(fù)習(xí)知識(shí)點(diǎn)總結(jié),僅供參考希望能幫助到大家。

初中生數(shù)學(xué)中考復(fù)習(xí)知識(shí)點(diǎn)總結(jié)

初中生數(shù)學(xué)中考復(fù)習(xí)知識(shí)點(diǎn)總結(jié)篇1

第十一章 全等三角形

一、知識(shí)框架

二、知識(shí)概念

1、全等三角形:兩個(gè)三角形的形狀、大小、都一樣時(shí),其中一個(gè)可以經(jīng)過平移、旋轉(zhuǎn)、對(duì)稱等運(yùn)動(dòng)(或稱變換)使之與另一個(gè)重合,這兩個(gè)三角形稱為全等三角形。

2、全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)角相等、對(duì)應(yīng)邊相等。

3、三角形全等的判定公理及推論有:

(1)“邊角邊”簡(jiǎn)稱“SAS”

(2)“角邊角”簡(jiǎn)稱“ASA”

(3)“邊邊邊”簡(jiǎn)稱“SSS”

(4)“角角邊”簡(jiǎn)稱“AAS”

(5)斜邊和直角邊相等的兩直角三角形(HL)。

4、角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。

5、證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系)。②、回顧三角形判定,搞清我們還需要什么。③、正確地書寫證明格式(順序和對(duì)應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題)。

在學(xué)習(xí)三角形的全等時(shí),教師應(yīng)該從實(shí)際生活中的圖形出發(fā),引出全等圖形進(jìn)而引出全等三角形。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的集合思維,啟發(fā)他們的靈感,使學(xué)生體會(huì)到集合的真正魅力。

第十二章 軸對(duì)稱

一、知識(shí)框架

二、知識(shí)概念

1、對(duì)稱軸:如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形;這條直線叫做對(duì)稱軸。

2、性質(zhì):(1)軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。

(2)角平分線上的點(diǎn)到角兩邊距離相等。

(3)線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。

(4)與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。

(5)軸對(duì)稱圖形上對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等。

3、等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角)

4、等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡(jiǎn)稱為“三線合一”。

5、等腰三角形的判定:等角對(duì)等邊。

6、等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°,

7、等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。

有一個(gè)角是60°的等腰三角形是等邊三角形。

有兩個(gè)角是60°的三角形是等邊三角形。

8、直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半。

9、直角三角形斜邊上的中線等于斜邊的一半。

本章內(nèi)容要求學(xué)生在建立在軸對(duì)稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學(xué)問題。

第十三章 實(shí)數(shù)

一、知識(shí)框架

二、知識(shí)概念

1、算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。

2、平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。

3、正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒有平方根。

4、正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。

5、數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0

實(shí)數(shù)部分主要要求學(xué)生了解無理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng),能估算無理數(shù)的大小;了解實(shí)數(shù)的運(yùn)算法則及運(yùn)算律,會(huì)進(jìn)行實(shí)數(shù)的運(yùn)算。重點(diǎn)是實(shí)數(shù)的意義和實(shí)數(shù)的分類;實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。

第十四章 一次函數(shù)

一、知識(shí)框架

二、知識(shí)概念

1、一次函數(shù):若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。

2、正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線。

3、正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

4、已知兩點(diǎn)坐標(biāo)求函數(shù)解析式:待定系數(shù)法

一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開始,也是今后學(xué)習(xí)其它函數(shù)知識(shí)的基石。在學(xué)習(xí)本章內(nèi)容時(shí),教師應(yīng)該多從實(shí)際問題出發(fā),引出變量,從具體到抽象的認(rèn)識(shí)事物。培養(yǎng)學(xué)生良好的變化與對(duì)應(yīng)意識(shí),體會(huì)數(shù)形結(jié)合的思想。在教學(xué)過程中,應(yīng)更加側(cè)重于理解和運(yùn)用,在解決實(shí)際問題的同時(shí),讓學(xué)習(xí)體會(huì)到數(shù)學(xué)的實(shí)用價(jià)值和樂趣。

第十五章整式的乘除與分解因式

一、知識(shí)概念

1、同底數(shù)冪的乘法法則:(m,n都是正數(shù))

2、冪的乘方法則:(m,n都是正數(shù))

3、整式的乘法

(1)單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。

(2)單項(xiàng)式與多項(xiàng)式相乘:單項(xiàng)式乘以多項(xiàng)式,是通過乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

(3)多項(xiàng)式與多項(xiàng)式相乘

多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

4、平方差公式:

5、完全平方公式:

6、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n)。

在應(yīng)用時(shí)需要注意以下幾點(diǎn):

①法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0。

②任何不等于0的數(shù)的0次冪等于1,即,如,(-2。50=1),則00無意義。

③任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時(shí),a-p的值一定是正的;當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如,

④運(yùn)算要注意運(yùn)算順序。

7、整式的除法

單項(xiàng)式除法單項(xiàng)式:單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;

多項(xiàng)式除以單項(xiàng)式:多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加。

8、分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。

分解因式的一般方法:1。提公共因式法2。運(yùn)用公式法3。十字相乘法

分解因式的步驟:

(1)先看各項(xiàng)有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組后提取各組公因式或運(yùn)用公式法來達(dá)到分解的目的;

(4)因式分解的最后結(jié)果必須是幾個(gè)整式的乘積,否則不是因式分解;

(5)因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止。

整式的乘除與分解因式這章內(nèi)容知識(shí)點(diǎn)較多,表面看來零碎的概念和性質(zhì)也較多,但實(shí)際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時(shí),應(yīng)多準(zhǔn)備些小組合作與交流活動(dòng),培養(yǎng)學(xué)生推理能力、計(jì)算能力。在做題中體驗(yàn)數(shù)學(xué)法則、公式的簡(jiǎn)潔美、和諧美,提高做題效率。

初中生數(shù)學(xué)中考復(fù)習(xí)知識(shí)點(diǎn)總結(jié)篇2

知識(shí)點(diǎn)1:一元二次方程的基本概念

1.一元二次方程3x2+5x-2=0的常數(shù)項(xiàng)是-2.

2.一元二次方程3x2+4x-2=0的一次項(xiàng)系數(shù)為4,常數(shù)項(xiàng)是-2.

3.一元二次方程3x2-5x-7=0的二次項(xiàng)系數(shù)為3,常數(shù)項(xiàng)是-7.

4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.

知識(shí)點(diǎn)2:直角坐標(biāo)系與點(diǎn)的位置

1.直角坐標(biāo)系中,點(diǎn)A(3,0)在軸上。

2.直角坐標(biāo)系中,x軸上的任意點(diǎn)的橫坐標(biāo)為0.

3.直角坐標(biāo)系中,點(diǎn)A(1,1)在第一象限。

4.直角坐標(biāo)系中,點(diǎn)A(-2,3)在第四象限。

5.直角坐標(biāo)系中,點(diǎn)A(-2,1)在第二象限。

知識(shí)點(diǎn)3:已知自變量的值求函數(shù)值

1.當(dāng)x=2時(shí),函數(shù)=的值為1.

2.當(dāng)x=3時(shí),函數(shù)=的值為1.

3.當(dāng)x=-1時(shí),函數(shù)=的值為1.

知識(shí)點(diǎn)4:基本函數(shù)的概念及性質(zhì)

1.函數(shù)=-8x是一次函數(shù)。

2.函數(shù)=4x+1是正比例函數(shù)。

3.函數(shù)是反比例函數(shù)。

4.拋物線=-3(x-2)2-5的開口向下。

5.拋物線=4(x-3)2-10的對(duì)稱軸是x=3.

6.拋物線的頂點(diǎn)坐標(biāo)是(1,2)。

7.反比例函數(shù)的圖象在第一、三象限

知識(shí)點(diǎn)5:特殊的數(shù)據(jù)

1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.

2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.

3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.

知識(shí)點(diǎn)6:特殊三角函數(shù)值

1.cs30°=。

2.sin260°+cs260°=1.

3.2sin30°+tan45°=2.

4.tan45°=1.

5.cs60°+sin30°=1.

知識(shí)點(diǎn)7:圓的基本性質(zhì)

1.半圓或直徑所對(duì)的圓周角是直角。

2.任意一個(gè)三角形一定有一個(gè)外接圓。

3.在同一平面內(nèi),到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。

4.在同圓或等圓中,相等的圓心角所對(duì)的弧相等。

5.同弧所對(duì)的圓周角等于圓心角的一半。

6.同圓或等圓的半徑相等。

7.過三個(gè)點(diǎn)一定可以作一個(gè)圓。

8.長(zhǎng)度相等的兩條弧是等弧。

9.在同圓或等圓中,相等的圓心角所對(duì)的弧相等。

10.經(jīng)過圓心平分弦的直徑垂直于弦。

知識(shí)點(diǎn)8:直線與圓的位置關(guān)系

1.直線與圓有唯一公共點(diǎn)時(shí),叫做直線與圓相切。

2.三角形的外接圓的圓心叫做三角形的外心。

3.弦切角等于所夾的弧所對(duì)的圓心角。

4.三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。

5.垂直于半徑的直線必為圓的切線。

6.過半徑的外端點(diǎn)并且垂直于半徑的直線是圓的切線。

7.垂直于半徑的直線是圓的切線。

8.圓的切線垂直于過切點(diǎn)的半徑。

初中生數(shù)學(xué)中考復(fù)習(xí)知識(shí)點(diǎn)總結(jié)篇3

有理數(shù)乘法法則:

(1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;

(2)任何數(shù)同零相乘都得零;

(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定.

初中生數(shù)學(xué)中考復(fù)習(xí)知識(shí)點(diǎn)總結(jié)篇4

有理數(shù)的乘方

(1)求相同因數(shù)的積的運(yùn)算叫做乘方.乘方運(yùn)算的結(jié)果叫冪.

一般地,記作,讀作:a的n次方,表示n個(gè)a相乘;其中,a是底數(shù),n是指數(shù),稱為冪。

(2)正數(shù)的任何次冪都是正數(shù).

負(fù)數(shù)的奇數(shù)次冪是負(fù)數(shù),

負(fù)數(shù)的偶數(shù)次冪是正數(shù).

(3)一個(gè)數(shù)的平方為它本身,這個(gè)數(shù)是0和1;

一個(gè)數(shù)的立方為它本身,這個(gè)數(shù)是0、1和-1。

初中生數(shù)學(xué)中考復(fù)習(xí)知識(shí)點(diǎn)總結(jié)篇5

1、解不等式問題的分類

(1)解一元一次不等式、

(2)解一元二次不等式、

(3)可以化為一元一次或一元二次不等式的不等式、

①解一元高次不等式;

②解分式不等式;

③解無理不等式;

④解指數(shù)不等式;

⑤解對(duì)數(shù)不等式;

⑥解帶絕對(duì)值的不等式;

⑦解不等式組、

2、解不等式時(shí)應(yīng)特別注意下列幾點(diǎn):

(1)正確應(yīng)用不等式的基本性質(zhì)、

(2)正確應(yīng)用冪函數(shù)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的增、減性、

(3)注意代數(shù)式中未知數(shù)的取值范圍、

3、不等式的同解性

(5)|f(x)|<g(x)與-g(x)<f(x)0)< p="">

(6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(shù)(x)≥0)同解;②與g(x)<0同解、

(9)當(dāng)a>1時(shí),af(x)>ag(x)與f(x)>g(x)同解,當(dāng)0ag(x)與f(x)<g(x)同< p="">

初中生數(shù)學(xué)中考復(fù)習(xí)知識(shí)點(diǎn)總結(jié)篇6

我們學(xué)習(xí)的圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條通過圓心的直線,所以是無數(shù)條對(duì)稱軸。

圓及有關(guān)概念

1 到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫做圓(circle).這個(gè)定點(diǎn)叫做圓的圓心。

2 連接圓心和圓上的任意一點(diǎn)的線段叫做半徑(radius)。

3 通過圓心并且兩端都在圓上的線段叫做直徑(diameter)。

4 連接圓上任意兩點(diǎn)的線段叫做弦(chord). 最長(zhǎng)的弦是直徑。

5 圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧(arc).大于半圓的弧稱為優(yōu)弧,優(yōu)弧是用三個(gè)字母表示。小于半圓的弧稱為劣弧,劣弧用兩個(gè)字母表示。半圓既不是優(yōu)弧,也不是劣弧。優(yōu)弧是大于180度的弧,劣弧是小于180度的弧

6 由兩條半徑和一段弧圍成的圖形叫做扇形(sector)。

7 由弦和它所對(duì)的一段弧圍成的圖形叫做弓形。

8 頂點(diǎn)在圓心上的角叫做圓心角(central angle)。

9 頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

10 圓周長(zhǎng)度與圓的直徑長(zhǎng)度的比值叫做圓周率。它是一個(gè)超越數(shù),通常用π表示,π=3.1415926535……。在實(shí)際應(yīng)用中,一般取π≈3.14。

11 圓周角等于弧所對(duì)的圓心角的一半。

字母表示

圓—⊙ ; 半徑—r或R(在環(huán)形圓中外環(huán)半徑表示的字母); 弧—⌒ ; 直徑—d ;

扇形弧長(zhǎng)—L ; 周長(zhǎng)—C ; 面積—S。

圓的表示方法要求很嚴(yán)格,需要用到相應(yīng)的知識(shí)要求。

初中生數(shù)學(xué)中考復(fù)習(xí)知識(shí)點(diǎn)總結(jié)篇7

二次函數(shù)的最值(10分)

如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得值(或最小值),即當(dāng)時(shí),。

如果自變量的取值范圍是,那么,首先要看是否在自變量取值范圍內(nèi),若在此范圍內(nèi),則當(dāng)x=時(shí),;若不在此范圍內(nèi),則需要考慮函數(shù)在范圍內(nèi)的增減性,如果在此范圍內(nèi),y隨x的增大而增大,則當(dāng)時(shí),,當(dāng)時(shí),;如果在此范圍內(nèi),y隨x的增大而減小,則當(dāng)時(shí),,當(dāng)時(shí),。

初中生數(shù)學(xué)中考復(fù)習(xí)知識(shí)點(diǎn)總結(jié)篇8

射線:

1、射線的定義:直線上一點(diǎn)和它們的一旁的部分叫做射線。

2、射線的特征:“向一方無限延伸,它有一個(gè)端點(diǎn)?!?/p>

線段:

1、線段的定義:直線上兩點(diǎn)和它之間的部分叫做線段,這兩點(diǎn)叫做線段的端點(diǎn)。

2、線段的性質(zhì)(公理):所有連接兩點(diǎn)的線中,線段最短。

1397315