高中數(shù)學(xué)教案教案

新華0 分享 時(shí)間:

教案是指教學(xué)活動(dòng)的計(jì)劃和組織安排,包括教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法、教學(xué)資源、評(píng)價(jià)方式等方面的設(shè)計(jì)。寫(xiě)好高中數(shù)學(xué)教案教案要注意什么?小編給大家分享高中數(shù)學(xué)教案教案,希望對(duì)大家有所幫助。

高中數(shù)學(xué)教案教案篇1

一、教材分析

1、地位及作用

圓錐曲線是一個(gè)重要的幾何模型,有許多幾何性質(zhì),這些性質(zhì)在日常生活、生產(chǎn)和科學(xué)技術(shù)中有著廣泛的應(yīng)用。同時(shí),圓錐曲線也是體現(xiàn)數(shù)形結(jié)合思想的重要素材。

推導(dǎo)橢圓的標(biāo)準(zhǔn)方程的方法對(duì)雙曲線、拋物線方程的推導(dǎo)具有直接的類(lèi)比作用,為學(xué)習(xí)雙曲線、拋物線內(nèi)容提供了基本模式和理論基礎(chǔ)。因此本節(jié)課具有承前啟后的作用,是本章的重點(diǎn)內(nèi)容。

2、教學(xué)內(nèi)容與教材處理

橢圓的標(biāo)準(zhǔn)方程共兩課時(shí),第一課時(shí)所研究的是橢圓標(biāo)準(zhǔn)方程的建立及其簡(jiǎn)單運(yùn)用,涉及的數(shù)學(xué)方法有觀察、比較、歸納、猜想、推理驗(yàn)證等,我將以課堂教學(xué)的組織者、引導(dǎo)者、合作者的身份,組織學(xué)生動(dòng)手實(shí)驗(yàn)、歸納猜想、推理驗(yàn)證,引導(dǎo)學(xué)生逐個(gè)突破難點(diǎn),自主完成問(wèn)題,使學(xué)生通過(guò)各種數(shù)學(xué)活動(dòng),掌握各種數(shù)學(xué)基本技能,初步學(xué)會(huì)從數(shù)學(xué)角度去觀察事物和思考問(wèn)題,產(chǎn)生學(xué)習(xí)數(shù)學(xué)的愿望和興趣。

3、教學(xué)目標(biāo)

根據(jù)教學(xué)大綱和學(xué)生已有的認(rèn)知基礎(chǔ),我將本節(jié)課的教學(xué)目標(biāo)確定如下:

1、知識(shí)目標(biāo)

①建立直角坐標(biāo)系,根據(jù)橢圓的定義建立橢圓的標(biāo)準(zhǔn)方程;

②能根據(jù)已知條件求橢圓的標(biāo)準(zhǔn)方程;

③進(jìn)一步感受曲線方程的概念,了解建立曲線方程的基本方法,體會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想。

2、能力目標(biāo)

①讓學(xué)生感知數(shù)學(xué)知識(shí)與實(shí)際生活的密切聯(lián)系,培養(yǎng)解決實(shí)際問(wèn)題的能力;

②培養(yǎng)學(xué)生的觀察能力、歸納能力、探索發(fā)現(xiàn)能力;

③提高運(yùn)用坐標(biāo)法解決幾何問(wèn)題的能力及運(yùn)算能力。

3、情感目標(biāo)

①親身經(jīng)歷橢圓標(biāo)準(zhǔn)方程的獲得過(guò)程,感受數(shù)學(xué)美的熏陶;

②通過(guò)主動(dòng)探索,合作交流,感受探索的樂(lè)趣和成功的體驗(yàn),體會(huì)數(shù)學(xué)的理性和嚴(yán)謹(jǐn);

③養(yǎng)成實(shí)事求是的科學(xué)態(tài)度和契而不舍的鉆研精神,形成學(xué)習(xí)數(shù)學(xué)知識(shí)的積極態(tài)度。

4、重點(diǎn)難點(diǎn)

基于以上分析,我將本課的教學(xué)重點(diǎn)、難點(diǎn)確定為:

①重點(diǎn):感受建立曲線方程的基本過(guò)程,掌握橢圓的標(biāo)準(zhǔn)方程及其推導(dǎo)方法;

②難點(diǎn):橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)。

二、教法設(shè)計(jì)

在教法上,主要采用探究性教學(xué)法和啟發(fā)式教學(xué)法。以啟發(fā)、引導(dǎo)為主,采用設(shè)疑的形式,逐步讓學(xué)生進(jìn)行探究性的學(xué)習(xí)。探究性學(xué)習(xí)就是充分利用了青少年學(xué)生富有創(chuàng)造性和好奇心,敢想敢為,對(duì)新事物具有濃厚的興趣的特點(diǎn)。讓學(xué)生根據(jù)教學(xué)目標(biāo)的要求和題目中的已知條件,自覺(jué)主動(dòng)地創(chuàng)造性地去分析問(wèn)題、討論問(wèn)題、解決問(wèn)題。

三、學(xué)法設(shè)計(jì)

通過(guò)創(chuàng)設(shè)情境,充分調(diào)動(dòng)學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn),讓學(xué)生經(jīng)歷“觀察——猜想——證明——應(yīng)用”的過(guò)程,發(fā)現(xiàn)新的知識(shí),把學(xué)生的潛意識(shí)狀態(tài)的好奇心變?yōu)樽杂X(jué)求知的創(chuàng)新意識(shí)。又通過(guò)實(shí)際操作,使剛產(chǎn)生的數(shù)學(xué)知識(shí)得到完善,提高了學(xué)生動(dòng)手動(dòng)腦的能力和增強(qiáng)了研究探索的綜合素質(zhì)。

四、學(xué)情分析

1、能力分析

①學(xué)生已初步掌握用坐標(biāo)法研究直線和圓的方程;

②對(duì)含有兩個(gè)根式方程的化簡(jiǎn)能力薄弱。

2、認(rèn)知分析

①學(xué)生已初步熟悉求曲線方程的基本步驟;

②學(xué)生已經(jīng)掌握直線和圓的方程及圓錐曲線的概念,對(duì)曲線的方程的概念有一定的了解;

③學(xué)生已經(jīng)初步掌握研究直線和圓的基本方法。

3、情感分析

學(xué)生具有積極的學(xué)習(xí)態(tài)度,強(qiáng)烈的探究欲望,能主動(dòng)參與研究。

五、教學(xué)程序

從建構(gòu)主義的角度來(lái)看,數(shù)學(xué)學(xué)習(xí)是指學(xué)生自己建構(gòu)數(shù)學(xué)知識(shí)的活動(dòng),在數(shù)學(xué)活動(dòng)過(guò)程中,學(xué)生與教材及教師產(chǎn)生交互作用,形成了數(shù)學(xué)知識(shí)、技能和能力,發(fā)展了情感態(tài)度和思維品質(zhì)。基于這一理論,我把這一節(jié)課的教學(xué)程序分成六個(gè)步驟來(lái)進(jìn)行,下面我向各位作詳細(xì)說(shuō)明:

高中數(shù)學(xué)教案教案篇2

教學(xué)目標(biāo)

(1)了解用坐標(biāo)法研究幾何問(wèn)題的方法,了解解析幾何的基本問(wèn)題.

(2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點(diǎn)的概念.

(3)通過(guò)曲線方程概念的教學(xué),培養(yǎng)學(xué)生數(shù)與形相互聯(lián)系、對(duì)立統(tǒng)一的辯證唯物主義觀點(diǎn).

(4)通過(guò)求曲線方程的教學(xué),培養(yǎng)學(xué)生的轉(zhuǎn)化能力和全面分析問(wèn)題的能力,幫助學(xué)生理解解析幾何的思想方法.

(5)進(jìn)一步理解數(shù)形結(jié)合的思想方法.

教學(xué)建議

教材分析

(1)知識(shí)結(jié)構(gòu)

曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標(biāo)法和解析幾何的思想,以及解析幾何的基本問(wèn)題,即由曲線的已知條件,求曲線方程;通過(guò)方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問(wèn)題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問(wèn)題.

(2)重點(diǎn)、難點(diǎn)分析

①本節(jié)內(nèi)容教學(xué)的重點(diǎn)是使學(xué)生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標(biāo)法和解析幾何的思想.

②本節(jié)的難點(diǎn)是曲線方程的概念和求曲線方程的方法.

教法建議

(1)曲線方程的概念是解析幾何的核心概念,也是基礎(chǔ)概念,教學(xué)中應(yīng)從直線方程概念和軌跡概念入手,通過(guò)簡(jiǎn)單的實(shí)例引出曲線的點(diǎn)集與方程的解集之間的對(duì)應(yīng)關(guān)系,說(shuō)明曲線與方程的對(duì)應(yīng)關(guān)系.曲線與方程對(duì)應(yīng)關(guān)系的基礎(chǔ)是點(diǎn)與坐標(biāo)的對(duì)應(yīng)關(guān)系.注意強(qiáng)調(diào)曲線方程的完備性和純粹性.

(2)可以結(jié)合已經(jīng)學(xué)過(guò)的直線方程的知識(shí)幫助學(xué)生領(lǐng)會(huì)坐標(biāo)法和解析幾何的思想,學(xué)習(xí)解析幾何的意義和要解決的問(wèn)題,為學(xué)習(xí)求曲線的方程做好邏輯上的和心理上的準(zhǔn)備.

(3)無(wú)論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準(zhǔn)則.

(4)從集合與對(duì)應(yīng)的觀點(diǎn)可以看得更清楚:

設(shè) 表示曲線 上適合某種條件的點(diǎn) 的集合;

表示二元方程的解對(duì)應(yīng)的點(diǎn)的坐標(biāo)的集合.

可以用集合相等的概念來(lái)定義“曲線的方程”和“方程的曲線”,即

(5)在學(xué)習(xí)求曲線方程的方法時(shí),應(yīng)從具體實(shí)例出發(fā),引導(dǎo)學(xué)生從曲線的幾何條件,一步步地、自然而然地過(guò)渡到代數(shù)方程(曲線的方程),這個(gè)過(guò)渡是一個(gè)從幾何向代數(shù)不斷轉(zhuǎn)化的過(guò)程,在這個(gè)過(guò)程中提醒學(xué)生注意轉(zhuǎn)化是否為等價(jià)的,這將決定第五步如何做.同時(shí)教師不要生硬地給出或總結(jié)出求解步驟,應(yīng)在充分分析實(shí)例的基礎(chǔ)上讓學(xué)生自然地獲得.教學(xué)中對(duì)課本例2的解法分析很重要.

這五個(gè)步驟的實(shí)質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即

文字語(yǔ)言中的幾何條件 數(shù)學(xué)符號(hào)語(yǔ)言中的等式 數(shù)學(xué)符號(hào)語(yǔ)言中含動(dòng)點(diǎn)坐標(biāo) , 的代數(shù)方程 簡(jiǎn)化了的 , 的代數(shù)方程

由此可見(jiàn),曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個(gè)形式的特點(diǎn)是“含動(dòng)點(diǎn)坐標(biāo)的代數(shù)方程.”

(6)求曲線方程的問(wèn)題是解析幾何中一個(gè)基本的問(wèn)題和長(zhǎng)期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學(xué)習(xí)中掌握的,教學(xué)中要把握好“度”.

高中數(shù)學(xué)教案教案篇3

【教學(xué)目標(biāo)】

1、知識(shí)與技能:

(1)掌握?qǐng)A的標(biāo)準(zhǔn)方程。

(2)會(huì)由圓的標(biāo)準(zhǔn)方程寫(xiě)出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫(xiě)出圓的標(biāo)準(zhǔn)方程。

(3)會(huì)判斷點(diǎn)與圓的位置關(guān)系。

2、過(guò)程與方法:

(1)進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問(wèn)題的能力。

(2)加深對(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)待定系數(shù)法的運(yùn)用。

3、情感、態(tài)度與價(jià)值觀:

(1)培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí)。

(2)讓學(xué)生感受數(shù)學(xué),體驗(yàn)數(shù)學(xué);從走入數(shù)學(xué)到走出數(shù)學(xué),生活處處有數(shù)學(xué),數(shù)學(xué)就在我身邊,體會(huì)到數(shù)學(xué)知識(shí)、思想方法和精神來(lái)源于生活,還要服務(wù)于生活;寓思想教育于教學(xué)。讓學(xué)生體會(huì)到數(shù)學(xué)的美以及數(shù)學(xué)的價(jià)值與魅力。

【學(xué)情分析】

對(duì)圓的方程有個(gè)初步的認(rèn)識(shí)以及在上章學(xué)習(xí)了直線與方程的基礎(chǔ)上,學(xué)習(xí)圓的方程,學(xué)生還是可以接受。在教學(xué)過(guò)程中,主要采用啟發(fā)性原則,并且與已經(jīng)學(xué)過(guò)的直線方程進(jìn)行類(lèi)比,發(fā)揮學(xué)生的思維能力、想象能力,由易到難,逐步加深。

【重點(diǎn)難點(diǎn)】

重點(diǎn):圓的標(biāo)準(zhǔn)方程和圓的標(biāo)準(zhǔn)方程特點(diǎn)的明確。

難點(diǎn):會(huì)根據(jù)不同的條件寫(xiě)出圓的標(biāo)準(zhǔn)方程。

【教學(xué)過(guò)程】

第一學(xué)時(shí)評(píng)論(0)教學(xué)目標(biāo)

教學(xué)活動(dòng)活動(dòng)1【導(dǎo)入】新聞聯(lián)播片段

請(qǐng)結(jié)合數(shù)學(xué)中圓知識(shí),談?wù)勀銓?duì)這句話的理解?

活動(dòng)2【講授】問(wèn)題1.

在直角坐標(biāo)系中,以A(a,b)為圓心,r為半徑的圓上的動(dòng)點(diǎn)M(x,y)滿足怎樣的關(guān)系式?

活動(dòng)3【活動(dòng)】想一想!

圓心在坐標(biāo)原點(diǎn),半徑長(zhǎng)為r的圓的方程是什么?

活動(dòng)4【導(dǎo)入】試試你的眼力!判斷下列方程是否為圓的標(biāo)準(zhǔn)方程:

(x-2)2+y=8;

(x-2)2-y2=8;

(2x-2)2+y2=8;

(x-2)2+y2=0;

(x-2)2+y2=a;

(2x-2)2+(2y-4)2=8。

答案:都不是,第6個(gè)可以化為圓的標(biāo)準(zhǔn)方程。

活動(dòng)5【活動(dòng)】再試一下!

圓(x1)2+(ay2)2=1a的圓心坐標(biāo)和半徑分別是什么?

答案:圓心坐標(biāo)為(1,—2),半徑是√2

活動(dòng)6【活動(dòng)】問(wèn)題2.

要寫(xiě)出圓的標(biāo)準(zhǔn)方程,只需知道圓的哪些量?

怎樣判斷一點(diǎn)是否在一個(gè)圓上?

學(xué)生回答,教師點(diǎn)評(píng).

活動(dòng)7【活動(dòng)】例1

寫(xiě)出圓心為A(2,-3),半徑長(zhǎng)為5的圓的方程,并判斷點(diǎn)M1(5,7),M2((√5,1)是否在這個(gè)圓上。

學(xué)生回答,教師點(diǎn)評(píng)后,學(xué)生閱讀教科書(shū)上本題解法.

活動(dòng)8【活動(dòng)】探究

你能判斷點(diǎn)M2在圓內(nèi)還是在圓外嗎?

學(xué)生回答,教師點(diǎn)評(píng)。

點(diǎn)與圓心距離比半徑大等價(jià)于點(diǎn)在圓外。

點(diǎn)與圓心距離比半徑小等價(jià)于點(diǎn)在圓內(nèi)。

點(diǎn)與圓心距離等于半徑等價(jià)于點(diǎn)在圓外等價(jià)于點(diǎn)的坐標(biāo)滿足方程。

活動(dòng)9【講授】解題收獲

1.從確定圓的兩個(gè)要素即圓心和半徑入手,直接寫(xiě)出圓的標(biāo)準(zhǔn)方程——直接法。

2.類(lèi)似于點(diǎn)與直線方程的關(guān)系:點(diǎn)在圓上等價(jià)于點(diǎn)坐標(biāo)滿足圓方程活動(dòng)10【活動(dòng)】試一試!

例2△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(5,1),B(7,-3),C(2,-8),求它的外接圓的方程.

師:△ABC的外接圓的圓心簡(jiǎn)稱(chēng)什么?

學(xué)生回答

師:△ABC的外心是什么的交點(diǎn)?

學(xué)生回答

師:求圓的標(biāo)準(zhǔn)方程,只需知道圓心坐標(biāo)和圓的半徑。這三點(diǎn)都在圓上,其坐標(biāo)一定是滿足所求圓的方程。這樣就可以設(shè)出圓的標(biāo)準(zhǔn)方程。

學(xué)生閱讀教材例2解法。

師:提示:方程組中

(1)(2)得到什么?

(1)(3)得到什么?

然后,怎樣就可以求出圓心坐標(biāo)和半徑。

活動(dòng)11【講授】解題收獲

先設(shè)出圓的標(biāo)準(zhǔn)方程,再根據(jù)已知條件建立方程組,從而求出圓心坐標(biāo)和半徑的方法——待定系數(shù)法。

活動(dòng)12【活動(dòng)】動(dòng)手折一折

請(qǐng)同學(xué)們準(zhǔn)備一個(gè)銳角三角形紙片,能否用手工的方法找到此三角形外接圓的圓心?

學(xué)生回答過(guò)程.

把三角形的任意兩個(gè)頂點(diǎn)重合進(jìn)行對(duì)折,就可以得到邊的垂直平分線,垂直平分線的交點(diǎn)即是三角形的外心。

師:把圓的弦對(duì)折,折線一定經(jīng)過(guò)圓心。即圓心一定在弦的垂直平分線上。

活動(dòng)13【活動(dòng)】Let’stry

例3已知圓心為C的圓經(jīng)過(guò)點(diǎn)A(1,1)和B(2,-2),且圓心C在直線m:x-y+1=0上,求圓心為C的圓的標(biāo)準(zhǔn)方程。

由學(xué)生閱讀例3,學(xué)生總結(jié)解題步驟。

活動(dòng)14【講授】解題收獲

由圓的幾何性質(zhì)直接求出圓心坐標(biāo)和半徑,然后寫(xiě)出標(biāo)準(zhǔn)方程——幾何性質(zhì)法。

活動(dòng)15【活動(dòng)】小結(jié)

一個(gè)方程

三種方法

一種思想

活動(dòng)16【講授】作業(yè)布置

作業(yè):教材P124習(xí)題A組第2題和第3題.

課下探究:

(1)平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)軌跡是圓。點(diǎn)的軌跡是圓的方法很多,請(qǐng)?jiān)囍页鰜?lái),并和其他同學(xué)交流。

(2)直線方程有五種形式,圓除了標(biāo)準(zhǔn)方程,還有其它形式嗎?

活動(dòng)17【導(dǎo)入】結(jié)束語(yǔ)

圓心半徑確定圓,

待定系數(shù)很普遍;

大家站在同一圓,

彰和諧平等友善;

半徑就像無(wú)形線,

把大家心聚一點(diǎn);

垂直平分折中線,

就能折出同心愿;

中國(guó)騰飛之夢(mèng)圓。

活動(dòng)18【測(cè)試】課堂測(cè)試

1.圓C:(x2)2+(y+1)2=3的圓心坐標(biāo)為()

A(2,1)B(2,—1)C(—2,1)D(—2,—1)

2.以原點(diǎn)為圓心,2為半徑的圓的標(biāo)準(zhǔn)方程是()

Ax2+y2=2Bx2+y2=4

C(x2)2+(y2)2=8Dx2+y2=√2

3圓心為(1,1)且與直線x+y=4相切的圓的方程是()

A(x1)2+(y1)2=2B(x1)2+(y1)2=4

C(x+1)2+(y+1)2=2D(x+1)2+(y+1)2=4

4圓A:(ax+2)2+y2=a+3,則此圓的半徑為_(kāi)_____________。

5已知一個(gè)圓的圓心在點(diǎn)C(—3,—4),且經(jīng)過(guò)原點(diǎn)。

(1)求該圓的標(biāo)準(zhǔn)方程;

(2)判斷點(diǎn)M(—1,0),N(1,—1),P(3,—4)和圓的位置關(guān)系。

6.已知△AOB的頂點(diǎn)坐標(biāo)分別是A(8,0),B(0,6),O(0,0),求△AOB外接圓的方程.

7求過(guò)點(diǎn)A(1,—1)B(—1,1)且圓心在直線x+y2=0上的圓方程

參考答案:1B2B3A42或√2

5(1)(x+3)2+(y+4)2=25

(2)M在圓內(nèi),N在圓上,P在圓外。

6(x4)2+(y3)2=25。

7(x1)2+(y1)2=4

高中數(shù)學(xué)教案教案篇4

1.1.1任意角

教學(xué)目標(biāo)

(一)知識(shí)與技能目標(biāo)

理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念.

(二)過(guò)程與能力目標(biāo)

會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書(shū)寫(xiě)終邊相同角的集合;掌握區(qū)間角的集合的書(shū)寫(xiě).

(三)情感與態(tài)度目標(biāo)

1.提高學(xué)生的推理能力;

2.培養(yǎng)學(xué)生應(yīng)用意識(shí).教學(xué)重點(diǎn)

任意角概念的理解;區(qū)間角的集合的書(shū)寫(xiě).教學(xué)難點(diǎn)

終邊相同角的集合的表示;區(qū)間角的集合的書(shū)寫(xiě).

教學(xué)過(guò)程

一、引入:

1.回顧角的定義

①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角.

②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.

二、新課:

1.角的有關(guān)概念:

①角的定義:

角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.

②角的名稱(chēng):

③角的分類(lèi):A

正角:按逆時(shí)針?lè)较蛐D(zhuǎn)形成的角零角:射線沒(méi)有任何旋轉(zhuǎn)形成的角

負(fù)角:按順時(shí)針?lè)较蛐D(zhuǎn)形成的角

④注意:

⑴在不引起混淆的情況下,“角α”或“∠α”可以簡(jiǎn)化成“α”;

⑵零角的終邊與始邊重合,如果α是零角α=0°;

⑶角的概念經(jīng)過(guò)推廣后,已包括正角、負(fù)角和零角.

⑤練習(xí):請(qǐng)說(shuō)出角α、β、γ各是多少度?

2.象限角的概念:

①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角.

例1.在直角坐標(biāo)系中,作出下列各角,并指出它們是第幾象限的角.

⑴60°;⑵120°;⑶240°;⑷300°;⑸420°;⑹480°;

答:分別為1、2、3、4、1、2象限角.

3.探究:教材P3面

終邊相同的角的表示:

所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個(gè)集合S={ββ=α+

k·360°,

k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個(gè)周角的和.注意:⑴k∈Z

⑵α是任一角;

⑶終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無(wú)限個(gè),它們相差

360°的整數(shù)倍;

⑷角α+k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.

例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.

⑴-120°;

⑵640°;

⑶-950°12’.

答:⑴240°,第三象限角;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.寫(xiě)出終邊在y軸上的角的集合(用0°到360°的角表示).解:{αα=90°+n·180°,n∈Z}.

例5.寫(xiě)出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫(xiě)出來(lái).

4.課堂小結(jié)

①角的定義;

②角的分類(lèi):

正角:按逆時(shí)針?lè)较蛐D(zhuǎn)形成的角零角:射線沒(méi)有任何旋轉(zhuǎn)形成的角

負(fù)角:按順時(shí)針?lè)较蛐D(zhuǎn)形成的角

③象限角;

④終邊相同的角的表示法.

5.課后作業(yè):

①閱讀教材P2-P5;

②教材P5練習(xí)第1-5題;

③教材P.9習(xí)題1.1第1、2、3題思考題:已知α角是第三象限角,則2α,

解:??角屬于第三象限,

?k·360°+180°<α<k·360°+270°(k∈Z)

因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)即(2k+1)360°<2α<(2k+1)360°+180°(k∈Z)

故2α是第一、二象限或終邊在y軸的非負(fù)半軸上的角.又k·180°+90°<

各是第幾象限角?

<k·180°+135°(k∈Z).

<n·360°+135°(n∈Z),

當(dāng)k為偶數(shù)時(shí),令k=2n(n∈Z),則n·360°+90°<此時(shí),

屬于第二象限角

<n·360°+315°(n∈Z),

當(dāng)k為奇數(shù)時(shí),令k=2n+1(n∈Z),則n·360°+270°<此時(shí),

屬于第四象限角

因此

屬于第二或第四象限角.

1.1.2弧度制

(一)

教學(xué)目標(biāo)

(二)知識(shí)與技能目標(biāo)

理解弧度的意義;了解角的集合與實(shí)數(shù)集R之間的可建立起一一對(duì)應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).

(三)過(guò)程與能力目標(biāo)

能正確地進(jìn)行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長(zhǎng)公式及扇形的面積公式,并能運(yùn)用公式解決一些實(shí)際問(wèn)題

(四)情感與態(tài)度目標(biāo)

通過(guò)新的度量角的單位制(弧度制)的引進(jìn),培養(yǎng)學(xué)生求異創(chuàng)新的精神;通過(guò)對(duì)弧度制與角度制下弧長(zhǎng)公式、扇形面積公式的對(duì)比,讓學(xué)生感受弧長(zhǎng)及扇形面積公式在弧度制下的簡(jiǎn)潔美.教學(xué)重點(diǎn)

弧度的概念.弧長(zhǎng)公式及扇形的面積公式的推導(dǎo)與證明.教學(xué)難點(diǎn)

“角度制”與“弧度制”的區(qū)別與聯(lián)系.

教學(xué)過(guò)程

一、復(fù)習(xí)角度制:

初中所學(xué)的角度制是怎樣規(guī)定角的度量的?規(guī)定把周角的作為1度的角,用度做單位來(lái)度量角的制度叫做角度制.

二、新課:

1.引入:

由角度制的定義我們知道,角度是用來(lái)度量角的`,角度制的度量是60進(jìn)制的,運(yùn)用起來(lái)不太方便.在數(shù)學(xué)和其他許多科學(xué)研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?

2.定義

我們規(guī)定,長(zhǎng)度等于半徑的弧所對(duì)的圓心角叫做1弧度的角;用弧度來(lái)度量角的單位制叫做弧度制.在弧度制下,1弧度記做1rad.在實(shí)際運(yùn)算中,常常將rad單位省略.

3.思考:

(1)一定大小的圓心角?所對(duì)應(yīng)的弧長(zhǎng)與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?

(2)引導(dǎo)學(xué)生完成P6的探究并歸納:弧度制的性質(zhì):

①半圓所對(duì)的圓心角為

②整圓所對(duì)的圓心角為

③正角的弧度數(shù)是一個(gè)正數(shù).

④負(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù).

⑤零角的弧度數(shù)是零.

⑥角α的弧度數(shù)的絕對(duì)值α=.

4.角度與弧度之間的轉(zhuǎn)換:

①將角度化為弧度:

②將弧度化為角度:

5.常規(guī)寫(xiě)法:

①用弧度數(shù)表示角時(shí),常常把弧度數(shù)寫(xiě)成多少π的形式,不必寫(xiě)成小數(shù).

②弧度與角度不能混用.

弧長(zhǎng)等于弧所對(duì)應(yīng)的圓心角(的弧度數(shù))的絕對(duì)值與半徑的積.

例1.把67°30’化成弧度.

例2.把?rad化成度.

例3.計(jì)算:

(1)sin4

(2)tan1.5.

8.課后作業(yè):

①閱讀教材P6–P8;

②教材P9練習(xí)第1、2、3、6題;

③教材P10面7、8題及B2、3題.

高中數(shù)學(xué)教案教案篇5

一、教材分析(說(shuō)教材):

1.教材所處的地位和作用:

本節(jié)內(nèi)容在全書(shū)和章節(jié)中的作用是:《》是中數(shù)學(xué)教材第冊(cè)第章第節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了基礎(chǔ),這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在中,占據(jù)的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。

2.教育教學(xué)目標(biāo):

根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

(1)知識(shí)目標(biāo):

(2)能力目標(biāo):通過(guò)教學(xué)初步培養(yǎng)學(xué)生分析問(wèn)題,解決實(shí)際問(wèn)題,讀圖分析,收集處理信息,團(tuán)結(jié)協(xié)作,語(yǔ)言表達(dá)能力以及通過(guò)師生雙邊活動(dòng),初步培養(yǎng)學(xué)生運(yùn)用知識(shí)的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實(shí)際的能力,(3)情感目標(biāo):通過(guò)的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實(shí)的生活經(jīng)歷與體驗(yàn)出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。

3.重點(diǎn),難點(diǎn)以及確定依據(jù):

下面,為了講清重難上點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>

二、教學(xué)策略(說(shuō)教法)

1.教學(xué)手段:

如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現(xiàn)教學(xué)目標(biāo)。在教學(xué)過(guò)程中擬計(jì)劃進(jìn)行如下操作:教學(xué)方法?;诒竟?jié)課的特點(diǎn):應(yīng)著重采用的教學(xué)方法。

2.教學(xué)方法及其理論依據(jù):堅(jiān)持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書(shū),討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問(wèn)題解決式教法,師生交談法,圖像信號(hào)法,問(wèn)答式,課堂討論法。在采用問(wèn)答法時(shí),特別注重不同難度的問(wèn)題,提問(wèn)不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會(huì),培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時(shí)通過(guò)課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書(shū)本知識(shí)回到社會(huì)實(shí)踐。提供給學(xué)生與其生活和周?chē)澜缑芮邢嚓P(guān)的數(shù)學(xué)知識(shí),學(xué)習(xí)基礎(chǔ)性的知識(shí)和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動(dòng)機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。

3.學(xué)情分析:(說(shuō)學(xué)法)

(1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散

(2)知識(shí)障礙上:知識(shí)掌握上,學(xué)生原有的知識(shí),許多學(xué)生出現(xiàn)知識(shí)遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識(shí)障礙,知識(shí)學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡(jiǎn)單明白,深入淺出的分析。

(3)動(dòng)機(jī)和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力

最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:

4.教學(xué)程序及設(shè)想:

(1)由引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強(qiáng)烈的問(wèn)題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過(guò)程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過(guò)程。在實(shí)際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)肖學(xué)習(xí)的新知識(shí),這樣獲取知識(shí),不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。

(2)由實(shí)例得出本課新的知識(shí)點(diǎn)

(3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。

(4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺(jué)運(yùn)用所學(xué)知識(shí)與解題思想方法。

(5)總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。知識(shí)性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)目標(biāo)。

(6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對(duì)題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對(duì)知識(shí)的串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。

(7)板書(shū)

(8)布置作業(yè)。

針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,

教學(xué)程序:

(一)課堂結(jié)構(gòu):復(fù)習(xí)提問(wèn),導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分

高中數(shù)學(xué)集合教學(xué)反思

集合這章內(nèi)容,教學(xué)參考書(shū)上安排的課時(shí)為五課時(shí),我們的導(dǎo)學(xué)案也是安排五課時(shí),實(shí)際教學(xué)時(shí),由于對(duì)學(xué)生的實(shí)際情況估計(jì)不足,第一課時(shí)的導(dǎo)學(xué)案用了兩課時(shí)才完成。集合這一章的特點(diǎn)是概念不多,但這章所涉及到的內(nèi)容很廣,學(xué)生學(xué)習(xí)本章內(nèi)容時(shí),不僅要理解本章的概念,還要理解與本章內(nèi)容相關(guān)聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學(xué)習(xí)過(guò)的內(nèi)容、有生活中的方方面面的相關(guān)知識(shí),再加上高中學(xué)習(xí)方法與初中不同,邏輯思維能力要求較高,因此學(xué)生感覺(jué)學(xué)起來(lái)比較困難。針對(duì)這種情況,我在實(shí)際教學(xué)時(shí),首先要求學(xué)生準(zhǔn)確理解概念,如:集合的元素具有三個(gè)性質(zhì):確定性、互異性、無(wú)序性。集合的關(guān)系、運(yùn)算等都是從元素的角度定義的,所以解集合問(wèn)題時(shí),教會(huì)學(xué)生對(duì)元素的性質(zhì)進(jìn)行分析,反復(fù)訓(xùn)練,讓學(xué)生通過(guò)實(shí)例體會(huì)這三個(gè)性質(zhì)。

第二,掌握相關(guān)的符號(hào)語(yǔ)言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時(shí),集合中的元素是什么,這是一個(gè)教學(xué)難點(diǎn)。第二個(gè)難點(diǎn)是集合的運(yùn)算—交集和并集。突破難點(diǎn)充分運(yùn)用數(shù)形結(jié)合思想,集合間的關(guān)系和運(yùn)算,以數(shù)形結(jié)合思想為指導(dǎo),借助圖形思考,可以使各集合間的關(guān)系直觀明了,使抽象的集合運(yùn)算建立在直觀的基礎(chǔ)上,使解題思路清晰明朗,直觀簡(jiǎn)捷,有利于問(wèn)題的解決。

第三,指導(dǎo)學(xué)生理解并掌握自然語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言這三種語(yǔ)言,靈活準(zhǔn)確地進(jìn)行語(yǔ)言轉(zhuǎn)換,可以幫助學(xué)生提高分析問(wèn)題,解決問(wèn)題的能力。

第四,集合問(wèn)題涉及到的其他內(nèi)容,遇到了講透,不拓展。

高中數(shù)學(xué)教案教案篇6

教學(xué)目標(biāo)

1。 理解的定義,初步掌握的圖象,性質(zhì)及其簡(jiǎn)單應(yīng)用。

2。 通過(guò)的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3。 通過(guò)對(duì)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn)是理解的定義,把握?qǐng)D象和性質(zhì)。

難點(diǎn)是認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的認(rèn)識(shí)。

教學(xué)用具

投影儀

教學(xué)方法

啟發(fā)討論研究式

教學(xué)過(guò)程

一。 引入新課

我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來(lái)研究一類(lèi)新的常見(jiàn)函數(shù)———————。

1。6。(板書(shū))

這類(lèi)函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問(wèn)題:

問(wèn)題1:某種細(xì)胞_時(shí),由1個(gè)_成2個(gè),2個(gè)_成4個(gè),……一個(gè)這樣的細(xì)胞_ 次后,得到的細(xì)胞_的個(gè)數(shù) 與 之間,構(gòu)成一個(gè)函數(shù)關(guān)系,能寫(xiě)出 與 之間的函數(shù)關(guān)系式嗎?

由學(xué)生回答: 與 之間的關(guān)系式,可以表示為 。

問(wèn)題2:有一根1米長(zhǎng)的繩子,第一次剪去繩長(zhǎng)一半,第二次再剪去剩余繩子的一半,……剪了 次后繩子剩余的長(zhǎng)度為 米,試寫(xiě)出 與 之間的函數(shù)關(guān)系。

由學(xué)生回答: 。

在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量 均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱(chēng)為。

一。 的概念(板書(shū))

1。定義:形如 的函數(shù)稱(chēng)為。(板書(shū))

教師在給出定義之后再對(duì)定義作幾點(diǎn)說(shuō)明。

2。幾點(diǎn)說(shuō)明 (板書(shū))

(1) 關(guān)于對(duì) 的規(guī)定:

教師首先提出問(wèn)題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問(wèn)題分解為若 會(huì)有什么問(wèn)題?如 ,此時(shí) , 等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。

若 對(duì)于 都無(wú)意義,若 則 無(wú)論 取何值,它總是1,對(duì)它沒(méi)有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定 且 。

(2)關(guān)于的定義域 (板書(shū))

教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無(wú)理數(shù)時(shí), 也是一個(gè)確定的實(shí)數(shù),對(duì)于無(wú)理指數(shù)冪,學(xué)過(guò)的有理指數(shù)冪的性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)?。擴(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值。

(3)關(guān)于是否是的判斷(板書(shū))

剛才分別認(rèn)識(shí)了中底數(shù),指數(shù)的要求,下面我們從整體的角度來(lái)認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是,請(qǐng)看下面函數(shù)是否是。

(1) , (2) , (3)

(4) , (5) 。

學(xué)生回答并說(shuō)明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是,其中(3) 可以寫(xiě)成 ,也是指數(shù)圖象。

最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問(wèn)題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫(huà)出它的圖象,再細(xì)致歸納性質(zhì)。

3。歸納性質(zhì)

作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。

函數(shù)

1。定義域 :

2。值域:

3。奇偶性 :既不是奇函數(shù)也不是偶函數(shù)

4。截距:在 軸上沒(méi)有,在 軸上為1。

對(duì)于性質(zhì)1和2可以兩條合在一起說(shuō),并追問(wèn)起什么作用。(確定圖象存在的大致位置)對(duì)第3條還應(yīng)會(huì)證明。對(duì)于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對(duì)最后一條也是指導(dǎo)函數(shù)圖象畫(huà)圖的依據(jù)。(圖象位于 軸上方,且與 軸不相交。)

在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對(duì)稱(chēng)性,故 的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少。

此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(shì)(當(dāng) 越小,圖象越靠近 軸, 越大,圖象上升的越快),并連出光滑曲線。

二。圖象與性質(zhì)(板書(shū))

1。圖象的畫(huà)法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。

2。草圖:

當(dāng)畫(huà)完第一個(gè)圖象之后,可問(wèn)學(xué)生是否需要再畫(huà)第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且 ,取值可分為兩段)讓學(xué)生明白需再畫(huà)第二個(gè),不妨取 為例。

此時(shí)畫(huà)它的圖象的方法應(yīng)讓學(xué)生來(lái)選擇,應(yīng)讓學(xué)生意識(shí)到列表描點(diǎn)不是的方法,而圖象變換的方法更為簡(jiǎn)單。即 = 與 圖象之間關(guān)于 軸對(duì)稱(chēng),而此時(shí) 的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對(duì)稱(chēng),教師借助計(jì)算機(jī)畫(huà)圖,在同一坐標(biāo)系下得到 的圖象。

最后問(wèn)學(xué)生是否需要再畫(huà)。(可能有兩種可能性,若學(xué)生認(rèn)為無(wú)需再畫(huà),則追問(wèn)其原因并要求其說(shuō)出性質(zhì),若認(rèn)為還需畫(huà),則教師可利用計(jì)算機(jī)再畫(huà)出如 的圖象一起比較,再找共性)

由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個(gè)表,如下:

以上內(nèi)容學(xué)生說(shuō)不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。

填好后,讓學(xué)生仿照此例再列一個(gè) 的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來(lái)分類(lèi),整理函數(shù)的性質(zhì)。

3。性質(zhì)。

(1)無(wú)論 為何值, 都有定義域?yàn)?,值域?yàn)?,都過(guò)點(diǎn) 。

(2) 時(shí), 在定義域內(nèi)為增函數(shù), 時(shí), 為減函數(shù)。

(3) 時(shí), , 時(shí), 。

總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。

三。簡(jiǎn)單應(yīng)用 (板書(shū))

1。利用單調(diào)性比大小。 (板書(shū))

一類(lèi)函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡(jiǎn)單的問(wèn)題。首先我們來(lái)看下面的問(wèn)題。

例1。 比較下列各組數(shù)的大小

(1) 與 ; (2) 與 ;

(3) 與1 。(板書(shū))

首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問(wèn)根據(jù)這個(gè)特點(diǎn),用什么方法來(lái)比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過(guò)程。

解: 在 上是增函數(shù),且< 。(板書(shū))

教師最后再?gòu)?qiáng)調(diào)過(guò)程必須寫(xiě)清三句話:

(1) 構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。

(2) 自變量的大小比較。

(3) 函數(shù)值的大小比較。

后兩個(gè)題的過(guò)程略。要求學(xué)生仿照第(1)題敘述過(guò)程。

例2。比較下列各組數(shù)的大小

(1) 與 ; (2) 與 ;

(3) 與 。(板書(shū))

先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)(1)來(lái)說(shuō) 可以寫(xiě)成 ,這樣就可以轉(zhuǎn)化成同底的問(wèn)題,再用例1的方法解決,對(duì)(2)來(lái)說(shuō) 可以寫(xiě)成 ,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來(lái)起橋梁作用)

最后由學(xué)生說(shuō)出 >1,<1,>。

解決后由教師小結(jié)比較大小的方法

(1) 構(gòu)造函數(shù)的方法: 數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)

(2) 搭橋比較法: 用特殊的數(shù)1或0。

三。鞏固練習(xí)

練習(xí):比較下列各組數(shù)的大小(板書(shū))

(1) 與 (2) 與 ;

(3) 與 ; (4) 與 。解答過(guò)程略

四。小結(jié)

1。的概念

2。的圖象和性質(zhì)

3。簡(jiǎn)單應(yīng)用

五 。板書(shū)設(shè)計(jì)

高中數(shù)學(xué)教案教案篇7

【學(xué)習(xí)導(dǎo)航】

(一)兩角和與差公式

(二)倍角公式

2cos2α=1+cos2α 2sin2α=1-cos2α

注意:倍角公式揭示了具有倍數(shù)關(guān)系的兩個(gè)角的三角函數(shù)的運(yùn)算規(guī)律,可實(shí)現(xiàn)函數(shù)式的降冪的變化。

注: (1)兩角和與差的三角函數(shù)公式能夠解答的三類(lèi)基本題型:求值題,化簡(jiǎn)題,證明題。

(2)對(duì)公式會(huì)“正用”,“逆用”,“變形使用”;

(3)掌握“角的演變”規(guī)律,

(4)將公式和其它知識(shí)銜接起來(lái)使用。

重點(diǎn)難點(diǎn)

重點(diǎn):幾組三角恒等式的應(yīng)用

難點(diǎn):靈活應(yīng)用和、差、倍角等公式進(jìn)行三角式化簡(jiǎn)、求值、證明恒等式

【精典范例】

例1 已知

求證:

例2 已知 求 的取值范圍

分析 難以直接用 的式子來(lái)表達(dá),因此設(shè) ,并找出 應(yīng)滿足的等式,從而求出 的取值范圍.

例3 求函數(shù) 的值域.

例4 已知且 、 、 均為鈍角,求角 的值.

分析 僅由 ,不能確定角 的值,還必須找出角 的范圍,才能判斷 的值. 由單位圓中的余弦線可以看出,若 使 的角為 或 若 則 或

【選修延伸】

例5 已知

求 的值.

例6 已知 ,

求 的值.

例7 已知

求 的值.

例8 求值:(1) (2)

【追蹤訓(xùn)練】

1. 等于 ( )

A. B. C. D.

2.已知 ,且,則 的值等于 ( )

A. B. C. D.

3.求值: = .

4.求證:(1)

高中數(shù)學(xué)教案教案篇8

各位評(píng)委老師,上午好,我是__號(hào)考生葉新穎。今天我的說(shuō)課題目是集合。首先我們來(lái)進(jìn)行教材分析。

教材分析

集合概念及其基本理論,稱(chēng)為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。

本節(jié)課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。

教學(xué)目標(biāo)

1、學(xué)習(xí)目標(biāo)

(1)通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合之間的關(guān)系以及理解“屬于”關(guān)系;

(2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;

2、能力目標(biāo)

(1)能夠把一句話一個(gè)事件用集合的方式表示出來(lái)。

(2)準(zhǔn)確理解集合與及集合內(nèi)的元素之間的關(guān)系。

3、情感目標(biāo)

通過(guò)本節(jié)的把實(shí)際事件用集合的方式表示出來(lái),從而培養(yǎng)數(shù)學(xué)敏感性,了解到數(shù)學(xué)于生活中。

教學(xué)重點(diǎn)與難點(diǎn)

重點(diǎn):集合的基本概念與表示方法;

難點(diǎn):運(yùn)用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡(jiǎn)單的集合;

教學(xué)方法

(1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習(xí)興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果;

(2)學(xué)生在老師的引導(dǎo)下,通過(guò)閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而完成本節(jié)課的教學(xué)目標(biāo)。

學(xué)習(xí)方法

(1)主動(dòng)學(xué)習(xí)法:舉出例子,提出問(wèn)題,讓學(xué)生在獲得感性認(rèn)識(shí)的同時(shí),

教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識(shí),培養(yǎng)學(xué)生思維想象的綜合能力。

(2)反饋補(bǔ)救法:在練習(xí)中,注意觀察學(xué)生對(duì)學(xué)習(xí)的反饋情況,以實(shí)現(xiàn)“培

優(yōu)扶差,滿足不同。”

教學(xué)思路,具體的思路如下

一、引入課題

軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問(wèn)這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?

在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合,即是一些研究對(duì)象的總體。

二、正體部分

學(xué)生閱讀教材,并思考下列問(wèn)題:

(1)集合有那些概念?

(2)集合有那些符號(hào)?

(3)集合中元素的特性是什么?

(4)如何給集合分類(lèi)?

(一)集合的有關(guān)概念

(1)對(duì)象:我們可以感覺(jué)到的客觀存在以及我們思想中的事物或抽象符號(hào),都可以稱(chēng)作對(duì)象.

(2)集合:把一些能夠確定的不同的對(duì)象看成一個(gè)整體,就說(shuō)這個(gè)整體是由這些對(duì)象的全體構(gòu)成的集合.

(3)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素.集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、元素通常用小寫(xiě)的

拉丁字母表示,如a、b、c、

1.思考:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,對(duì)學(xué)生的例子予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問(wèn)題。

2、元素與集合的關(guān)系

(1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A。(舉例)

集合A={2,3,4,6,9}a=2因此我們知道a∈A(2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作aA

要注意“∈”的方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫(xiě).(舉例)集合A={3,4,6,9}a=2因此我們知道aA

3、集合中元素的特性(1)確定性:(2)互異性:(3)無(wú)序性:

4、集合分類(lèi)

根據(jù)集合所含元素個(gè)屬不同,可把集合分為如下幾類(lèi):

(1)把不含任何元素的集合叫做空集Ф

(2)含有有限個(gè)元素的集合叫做有限集

(3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集注:應(yīng)區(qū)分,{},{0},0等符號(hào)的含義

5、常用數(shù)集及其表示方法

(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合.記作N

(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集.記作N__或N+

(3)整數(shù)集:全體整數(shù)的集合.記作Z

(4)有理數(shù)集:全體有理數(shù)的集合.記作Q

(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合.記作R注:

(1)自然數(shù)集包括數(shù)0.

(2)非負(fù)整數(shù)集內(nèi)排除0的集.記作N__或N+,Q、Z、R等其它數(shù)集內(nèi)排除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z__

(二)集合的表示方法

我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。

(1)列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號(hào)內(nèi)。如:{1,2,3,4,5},{-2,3-+2,5y3--,-2+y2},;例1.(課本例1)思考2,引入描述法

說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。

(2)描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào){}內(nèi)。具體方法:在大括號(hào)內(nèi)先寫(xiě)上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫(huà)一條豎線,在豎線后寫(xiě)出這個(gè)集合中元素所具有的共同特征。

如:{---3>2},{(-,y)y=-2+1},{直角三角形},;例2.(課本例2)說(shuō)明:(課本P5最后一段)思考3:(課本P6思考)

強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

{(-,y)y=-2+3-+2}與{yy=-2+3-+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。

辨析:這里的{}已包含“所有”的意思,所以不必寫(xiě){全體整數(shù)}。下列寫(xiě)法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。

說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。

(三)課堂練習(xí)(課本P6練習(xí))

三、歸納小結(jié)與作業(yè)

本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

書(shū)面作業(yè):習(xí)題1.1,第1-4題。

高中數(shù)學(xué)教案教案篇9

一、單元教學(xué)內(nèi)容分析

本章節(jié)內(nèi)容教學(xué)北師大版教材安排在三角函數(shù)章節(jié)之后,教本必修四的中間位置,為后面推導(dǎo)和差角公式做好鋪墊,為解三角形問(wèn)題和平面幾何中的許多計(jì)算問(wèn)題提供便利工具。

向量既有代數(shù)特征,又有幾何特征,是溝通代數(shù)與幾何的橋梁。向量具有代數(shù)特征,運(yùn)算及其規(guī)律是代數(shù)學(xué)研究的基本問(wèn)題。向量可以進(jìn)行多種運(yùn)算,如向量加、減、數(shù)乘和叉乘等。向量運(yùn)算具有一系列豐富的運(yùn)算性質(zhì),與數(shù)運(yùn)算相比,向量運(yùn)算擴(kuò)充了運(yùn)算的對(duì)象和運(yùn)算的性質(zhì)。向量具有幾何特征,它不僅可以描述、刻畫(huà)幾何中的點(diǎn)、線、面及其位置關(guān)系,數(shù)量關(guān)系,還可以表示空間當(dāng)中的曲線與曲面,是研究幾何問(wèn)題的基本工具。本教材能從學(xué)生熟悉的實(shí)例出發(fā),經(jīng)過(guò)觀察、分析、歸納等方法概括出向量的相關(guān)概念,比以往教材更能使學(xué)生產(chǎn)生自然而親切的感覺(jué),有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,使他們真正認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,從而提高學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)。

向量是刻畫(huà)現(xiàn)實(shí)世界的重要的數(shù)學(xué)模型。它為理解抽象代數(shù)、線性代數(shù)、泛函分析提供了基本數(shù)學(xué)模型。他與物理學(xué)科緊密相連。由于向量是近代數(shù)學(xué)中重要和基本的數(shù)學(xué)概念,是溝通代數(shù)、幾何與三角函數(shù)的一種重要工具,它有極其豐富的實(shí)際背景,有著廣泛的實(shí)際應(yīng)用,因此它具有很高的教育教學(xué)價(jià)值,它對(duì)更新和完善知識(shí)結(jié)構(gòu)具有重要的意義。

教材結(jié)合向量的幾何背景——有向線段,引入向量的表示法,規(guī)定了向量的長(zhǎng)度的概念。定義了零向量、單位向量、平行向量和共線向量等概念。對(duì)于許多舊有的知識(shí)利用向量方法去處理,就會(huì)變得非常簡(jiǎn)捷,甚至變得十分明了,從而有助于學(xué)生對(duì)這些知識(shí)有更深刻的理解,更牢固的記憶,更自如的應(yīng)用,總之,有助于學(xué)生建立良好的數(shù)學(xué)認(rèn)知結(jié)構(gòu)。通過(guò)本部分內(nèi)容的學(xué)習(xí),可以促使學(xué)生認(rèn)識(shí)到向量與實(shí)際生活緊密相連,它在解決實(shí)際問(wèn)題當(dāng)中有著廣泛應(yīng)用。

二、單元學(xué)生情況分析

1、學(xué)生在初中階段接觸過(guò)物理學(xué)里面的矢量,已具備基本的認(rèn)知水平和運(yùn)算能力,具備在運(yùn)算中探索和發(fā)現(xiàn)數(shù)學(xué)結(jié)論的基本能力。

2、學(xué)生已基本掌握函數(shù)和三角函數(shù)章節(jié)的基礎(chǔ)知識(shí),會(huì)運(yùn)用數(shù)形結(jié)合法,整體代換,分類(lèi)討論法,類(lèi)比思想解決實(shí)際問(wèn)題。

3、學(xué)生已具備基本的分析和解決數(shù)學(xué)問(wèn)題的勇氣和智慧。

三、教學(xué)目標(biāo)

1.知識(shí)與技能目標(biāo)

(1)理解并掌握平面向量的基本概念。通過(guò)力與力的分析實(shí)例,了解向量的實(shí)際背景,理解平面向量和向量相等的含義,理解向量的幾何表示。

(2)通過(guò)實(shí)例,掌握向量的加、減、數(shù)乘向量和兩向量數(shù)量積運(yùn)算,并理解其幾何意義。

(3)理解并掌握向量共線和垂直問(wèn)題。理解平面向量基本定理及其意義。掌握平面向量的正交分解及其坐標(biāo)表示。會(huì)用坐標(biāo)表示向量的加、減、數(shù)乘向量及數(shù)量積運(yùn)算。

(4)通過(guò)物理中“功”等實(shí)例,理解平面向量數(shù)量積的含義及其物理意義。體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系。掌握數(shù)量積的坐標(biāo)表示,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積來(lái)判斷向量的垂直問(wèn)題。

2.過(guò)程與方法目標(biāo)

(1)通過(guò)實(shí)例讓學(xué)生親身經(jīng)歷觀察、分析、歸納、抽象概括的思維過(guò)程。感受和認(rèn)知不同維度中的向量表示。

(2)通過(guò)讓學(xué)生體會(huì)平面向量數(shù)量積的物理意義和幾何意義,體會(huì)數(shù)學(xué)與物理是密切聯(lián)系的。

(3)經(jīng)歷用向量方法解決某些簡(jiǎn)單的平面幾何及力學(xué)問(wèn)題與其他一些實(shí)際問(wèn)題的過(guò)程,體會(huì)向量是一種處理幾何問(wèn)題、物理問(wèn)題等的工具,使學(xué)生的運(yùn)算能力和解決實(shí)際問(wèn)題的能力得到提升。

3.情感、態(tài)度與價(jià)值觀

(1)從學(xué)生熟悉的生活實(shí)例出發(fā)建立平面向量概念,激發(fā)學(xué)生的學(xué)習(xí)興趣。從物理知識(shí)引入到數(shù)學(xué)知識(shí)的形成過(guò)程,使學(xué)生體會(huì)到知識(shí)之間的相互聯(lián)系,建立全面、科學(xué)的價(jià)值觀。

(2)通過(guò)對(duì)向量正交分解的學(xué)習(xí),使學(xué)生進(jìn)一步體會(huì)一般的問(wèn)題往往歸結(jié)為人們最熟悉的特殊問(wèn)題。

(3)通過(guò)對(duì)本章節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生體會(huì)到數(shù)學(xué)和其他知識(shí)相聯(lián)系,體會(huì)數(shù)學(xué)作為解決問(wèn)題的工具的作用。

重點(diǎn):

1.平面向量的概念,運(yùn)算,共線問(wèn)題,平面向量的基本定理。

2.平面向量的坐標(biāo)表示,向量數(shù)量積的概念和性質(zhì),向量的垂直問(wèn)題。

3.體會(huì)向量在解決平面幾何問(wèn)題和物理問(wèn)題中的作用。

難點(diǎn):

1.對(duì)自由向量,向量加、減法數(shù)乘向量定義的理解和對(duì)平面向量基本定理理解。

2.對(duì)平面向量運(yùn)算坐標(biāo)表示及向量數(shù)量積概念的理解,平面向量數(shù)量積的應(yīng)用。

3.用向量表示幾何關(guān)系。

四、單元教學(xué)活動(dòng)

1.引入向量相關(guān)概念時(shí),除用教材中給出的實(shí)例外,鼓勵(lì)學(xué)生列舉實(shí)際生活中的其他實(shí)例。

2.學(xué)習(xí)向量知識(shí)的同時(shí),盡量地聯(lián)系熟悉的物理現(xiàn)象或其他生活實(shí)例,用向量表述和刻畫(huà)。以便讓學(xué)生領(lǐng)悟到知識(shí)之間和學(xué)科之間的相互聯(lián)系。

3.通過(guò)協(xié)作討論,根據(jù)生活中的實(shí)際案例,邊了解概念,邊畫(huà)圖;邊進(jìn)行計(jì)算,邊畫(huà)圖;進(jìn)一步培養(yǎng)學(xué)生數(shù)形結(jié)合、形象思考、分析問(wèn)題的習(xí)慣。

4.在學(xué)習(xí)本章知識(shí)的過(guò)程中,應(yīng)注意向量運(yùn)算的兩個(gè)方面:幾何意義與代數(shù)表示。由于新知識(shí)的學(xué)習(xí)過(guò)程中,它們相對(duì)孤立,學(xué)生對(duì)他們的認(rèn)識(shí)也就不容易形成體系。所以在教授新課時(shí)應(yīng)有意識(shí)地做一些滲透和鋪墊,在章節(jié)小結(jié)時(shí)應(yīng)強(qiáng)調(diào)它們的區(qū)別與聯(lián)系,以便學(xué)生更加全面、深刻的認(rèn)識(shí)向量。

高中數(shù)學(xué)教案教案篇10

一、教學(xué)目標(biāo)設(shè)計(jì)

通過(guò)實(shí)例理解充分條件、必要條件的意義。

能夠在簡(jiǎn)單的問(wèn)題情境中判斷條件的充分性、必要性。

二、教學(xué)重點(diǎn)及難點(diǎn)

充分條件、必要條件的判斷;

充分條件、必要條件的判斷方法。

三、教學(xué)流程設(shè)計(jì)

四、教學(xué)過(guò)程設(shè)計(jì)

一、概念引入

早在戰(zhàn)國(guó)時(shí)期,《墨經(jīng)》中就有這樣一段話有之則必然,無(wú)之則未必不然,是為大故無(wú)之則必不然,有之則未必然,是為小故。

今天,在日常生活中,常聽(tīng)人說(shuō):這充分說(shuō)明,沒(méi)有這個(gè)必要等,在數(shù)學(xué)中,也講充分和必要,這節(jié)課,我們就來(lái)學(xué)習(xí)教材第一章第五節(jié)充分條件與必要條件。

二、概念形成

1、 首先請(qǐng)同學(xué)們判斷下列命題的真假

(1)若兩三角形全等,則兩三角形的面積相等。

(2)若三角形有兩個(gè)內(nèi)角相等,則這個(gè)三角形是等腰三角形。

(3)若某個(gè)整數(shù)能夠被4整除,則這個(gè)整數(shù)必是偶數(shù)。

(4) 若ab=0,則a=0。

解答:命題(2)、(3)、(4)為真。命題(4)為假;

2、請(qǐng)同學(xué)用推斷符號(hào)寫(xiě)出上述命題。

解答:(1)兩三角形全等 兩三角形的面積相等。

(2) 三角形有兩個(gè)內(nèi)角相等 三角形是等腰三角形。

(3) 某個(gè)整數(shù)能夠被4整除則這個(gè)整數(shù)必是偶數(shù);

(4)ab=0 a=0。

3、充分條件與必要條件

繼續(xù)結(jié)合上述實(shí)例說(shuō)明什么是充分條件、什么是必要條件。

若某個(gè)整數(shù)能夠被4整除則這個(gè)整數(shù)必是偶數(shù)中,我們稱(chēng)某個(gè)整數(shù)能夠被4整除是這個(gè)整數(shù)必是偶數(shù)的充分條件,可以解釋為:只要某個(gè)整數(shù)能夠被4整除成立,這個(gè)整數(shù)必是偶數(shù)就一定成立;而稱(chēng)這個(gè)整數(shù)必是偶數(shù)是某個(gè)整數(shù)能夠被4整除的必要條件,可以解釋成如果某個(gè)整數(shù)能夠被4整除 成立,就必須要這個(gè)整數(shù)必是偶數(shù)成立

充分條件:一般地,用、分別表示兩件事,如果這件事成立,可以推出這件事也成立,即,那么叫做的充分條件。[說(shuō)明]:①可以解釋為:為了使成立,具備條件就足夠了。②可進(jìn)一步解釋為:有它即行,無(wú)它也未必不行。③結(jié)合實(shí)例解釋為: x = 0 是 xy = 0 的充分條件,xy = 0不一定要 x = 0。)

必要條件:如果,那么叫做的必要條件。

[說(shuō)明]:①可以解釋為若,則叫做的必要條件,是的充分條件。②無(wú)它不行,有它也不一定行③結(jié)合實(shí)例解釋為:如 xy = 0是 x = 0的必要條件,若xy0,則一定有 x若xy = 0也不一定有 x = 0。

回答上述問(wèn)題(1)、(2)中的條件關(guān)系。

(1)中:兩三角形全等是兩三角形的面積相等的充分條件;兩三角形的面積相等是兩三角形全等的必要條件。

(2)中:三角形有兩個(gè)內(nèi)角相等是三角形是等腰三角形的充分條件;三角形是等腰三角形是三角形有兩個(gè)內(nèi)角相等的必要條件。

4、拓廣引申

把命題:若某個(gè)整數(shù)能夠被4整除,則這個(gè)整數(shù)必是偶數(shù)中的條件與結(jié)論分別記作與,那么,原命題與逆命題的真假同與之間有什么關(guān)系呢?

關(guān)系可分為四類(lèi):

(1)充分不必要條件,即,而

(2)必要不充分條件,即,而

(3)既充分又必要條件,即,又有

(4)既不充分也不必要條件,即,又有。

三、典型例題(概念運(yùn)用)

例1:(1)已知四邊形ABCD是凸四邊形,那么AC=BD是四邊形ABCD是矩形的什么條件?為什么?(課本例題p22例4)

(2) 是 的什么條件。

(3)a+b是1,b什么條件。

解:(1)AC=BD是四邊形ABCD是矩形的必要不充分條件。

(2)充分不必要條件。

(3)必要不充分條件。

[說(shuō)明]①如果把命題條件與結(jié)論分別記作與,則既要對(duì)進(jìn)行判斷,又要對(duì)進(jìn)行判斷。②要否定條件的充分性、必要性,則只需舉一反例即可。

例2:判斷下列電路圖中p與q的充要關(guān)系。其中p:開(kāi)關(guān)閉合;q:

燈亮。(補(bǔ)充例題)

[說(shuō)明]①圖中含有兩個(gè)開(kāi)關(guān)時(shí),p表示其中一個(gè)閉合,另一個(gè)情況不確定。②加強(qiáng)學(xué)科之間的橫向溝通,通過(guò)圖示,深化概念認(rèn)識(shí)。

例3、探討下列生活中名言名句的充要關(guān)系。(補(bǔ)充例題)

(1)頭發(fā)長(zhǎng),見(jiàn)識(shí)短。 (2)驕兵必?cái) ?/p>

(3)有志者事竟成。 (4)春回大地,萬(wàn)物復(fù)蘇。

(5)不入虎穴、焉得虎子 (6)四肢發(fā)達(dá),頭腦簡(jiǎn)單

[說(shuō)明]通過(guò)本例,充分調(diào)動(dòng)學(xué)生生活經(jīng)驗(yàn),使得抽象概念形象化。從而激發(fā)學(xué)生學(xué)習(xí)熱情。

四、鞏固練習(xí)

1、課本P/22練習(xí)1。5(1)

2:填表(補(bǔ)充)

p q p是q的

什么條件 q是p的

什么條件

兩個(gè)角相等 兩個(gè)角是對(duì)頂角

內(nèi)錯(cuò)角相等 兩直線平行

四邊形對(duì)角線相等 四邊形是平行邊形

a=b ac=bc

[說(shuō)明]通過(guò)練習(xí),及時(shí)鞏固所學(xué)新知,反饋教學(xué)效果。

五、課堂小結(jié)

1、本節(jié)課主要研究的內(nèi)容:

推斷符號(hào),

充分條件的意義 命題充分性、必要性的判斷。

必要條件的意義

2、 充分條件、必要條件判別步驟:

① 認(rèn)清條件和結(jié)論。

② 考察p q和q p的真假。

3、充分條件、必要條件判別技巧:

① 可先簡(jiǎn)化命題。

② 否定一個(gè)命題只要舉出一個(gè)反例即可。

③ 將命題轉(zhuǎn)化為等價(jià)的逆否命題后再判斷。

六、課后作業(yè)

書(shū)面作業(yè):課本P/24習(xí)題1。51,2,3。

五、教學(xué)設(shè)計(jì)說(shuō)明

1、充分條件、必要條件以及下節(jié)課中充要條件與集合的概念一樣涉及到數(shù)學(xué)的各個(gè)分支,用推出關(guān)系的形式給出它的定義,對(duì)高一學(xué)生只要求知道它的意義,并能判斷簡(jiǎn)單的充分條件與必要條件。

2、由于充要條件與命題的真假、命題的條件與結(jié)論的相互關(guān)系緊密相關(guān),為此,教學(xué)時(shí)可以從判斷命題的真假入手,來(lái)分析命題的條件對(duì)于結(jié)論來(lái)說(shuō),是否充分,從而引入充分條件的概念,進(jìn)而引入必要條件的概念。

3、教材中對(duì)充分條件、必要條件的定義沒(méi)有作過(guò)多的解釋說(shuō)明,為了讓學(xué)生能理解定義的合理性,在教學(xué)過(guò)程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關(guān)系來(lái)認(rèn)識(shí)充分條件的概念,從互為逆否命題的等價(jià)性來(lái)引出必要條件的概念。

4、由于這節(jié)課概念性、理論性較強(qiáng),一般的教學(xué)使學(xué)生感到枯燥乏味,為此,激發(fā)學(xué)生的學(xué)習(xí)興趣是關(guān)鍵。教學(xué)中始終要注意以學(xué)生為主,結(jié)合相關(guān)學(xué)科及學(xué)生生活經(jīng)驗(yàn)讓學(xué)生在自我思考、相互交流中去給概念下定義,去體會(huì)概念的本質(zhì)屬性。

高中數(shù)學(xué)教案教案篇11

一、教學(xué)目標(biāo)

【知識(shí)與技能】

進(jìn)一步掌握直線方程的各種形式,會(huì)根據(jù)條件求直線的方程。

【過(guò)程與方法】

在分析問(wèn)題、動(dòng)手解題的過(guò)程中,提升邏輯思維、計(jì)算能力以及分析問(wèn)題、解決問(wèn)題的能力。

【情感、態(tài)度與價(jià)值觀】

在學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn),增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣與信心。

二、教學(xué)重難點(diǎn)

【重點(diǎn)】根據(jù)條件求直線的方程。

【難點(diǎn)】根據(jù)條件求直線的方程。

三、教學(xué)過(guò)程

(一)課堂導(dǎo)入

直接點(diǎn)明最近學(xué)習(xí)了直線方程的多種形式,這節(jié)課將練習(xí)求直線的方程。

(二)回顧舊知

帶領(lǐng)學(xué)生復(fù)習(xí)回顧直線斜率的求法,以及直線方程的點(diǎn)斜式、兩點(diǎn)式和一般式。

為了加深學(xué)生的運(yùn)用和理解,繼續(xù)引導(dǎo)學(xué)生思考,是否有其他解題思路。預(yù)設(shè)大部分學(xué)生能夠想到用點(diǎn)斜式進(jìn)行計(jì)算。教師肯定學(xué)生想法并組織學(xué)生動(dòng)手計(jì)算,之后請(qǐng)學(xué)生上黑板板演。

預(yù)設(shè)學(xué)生有多種解題方法,如AB、AC所在直線方程用兩點(diǎn)式求解,BC所在直線方程用點(diǎn)斜式求解。

學(xué)生板演后教師講解,點(diǎn)明不足,提示學(xué)生,計(jì)算結(jié)束后要記得將所求得方程整理為直線方程的一般式。

師生總結(jié)解題思路:求直線所在方程時(shí),若給出兩點(diǎn)坐標(biāo),在符合條件的情況下,可直接套用公式,也可利用點(diǎn)斜式進(jìn)行求解,注意一題多解的情況。

(四)小結(jié)作業(yè)

小結(jié):學(xué)生暢談收獲。

作業(yè):完成課后相應(yīng)練習(xí)題,根據(jù)已知條件求直線的方程。

高中數(shù)學(xué)教案教案篇12

一、什么是教學(xué)案例

教學(xué)案例是真實(shí)而又典型且含有問(wèn)題的事件。簡(jiǎn)單地說(shuō),一個(gè)教學(xué)案例就是一個(gè)包含有疑難問(wèn)題的實(shí)際情境的描述,是一個(gè)教學(xué)實(shí)踐過(guò)程中的故事,描述的是教學(xué)過(guò)程中“意料之外,情理之中的事”。

這可以從以下幾個(gè)層次來(lái)理解:

教學(xué)案例是事件:教學(xué)案例是對(duì)教學(xué)過(guò)程中的一個(gè)實(shí)際情境的描述。它講述的是一個(gè)故事,敘述的是這個(gè)教學(xué)故事的產(chǎn)生、發(fā)展的歷程,它是對(duì)教學(xué)現(xiàn)象的動(dòng)態(tài)性的把握。

教學(xué)案例是含有問(wèn)題的事件:事件只是案例的基本素材,并不是所有的教學(xué)事件都可以成為案例。能夠成為案例的事件,必須包含有問(wèn)題或疑難情境在內(nèi),并且也可能包含有解決問(wèn)題的方法在內(nèi)。正因?yàn)檫@一點(diǎn),案例才成為一種獨(dú)特的研究成果的表現(xiàn)形式。

案例是真實(shí)而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來(lái)一定的啟示和體會(huì)。案例與故事之間的根本區(qū)別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學(xué)事件的真實(shí)再現(xiàn)。是對(duì)“當(dāng)前”課堂中真實(shí)發(fā)生的實(shí)踐情景的描述。它不能用“搖擺椅子上杜撰的事實(shí)來(lái)替代”,也不能從抽象的、概括化的理論中演繹的事實(shí)來(lái)替代。

二、如何進(jìn)行教學(xué)案例研究

教學(xué)案例是教師教學(xué)行為真實(shí)、典型的記錄,也是教師教學(xué)理念和教學(xué)思想的真實(shí)體現(xiàn)。因此它是教育教學(xué)研究的寶貴資源,也是教師之間交流的重要媒介。進(jìn)行教學(xué)案例的研究是教師不斷反思、改進(jìn)自己教學(xué)的一種方法,能促使教師更為深刻地認(rèn)識(shí)到自己工作中的重點(diǎn)和難點(diǎn)。這個(gè)過(guò)程就是教師自我教育和成長(zhǎng)的過(guò)程。

那么如何進(jìn)行教學(xué)案例研究呢?一般情況下,案例研究的程序基本有以下兩個(gè)環(huán)節(jié):案例研究的準(zhǔn)備及實(shí)施、案例研究報(bào)告的撰寫(xiě)與反思。

(一)案例研究的準(zhǔn)備與實(shí)施

1.研究主題的選擇

案例研究都要有研究的重點(diǎn)和主題,這個(gè)主題常與教學(xué)改革的核心理念、常見(jiàn)的疑難問(wèn)題和困惑事件相關(guān),一般來(lái)說(shuō)可以從教學(xué)的各個(gè)方面確定研究的主題,如從教師教學(xué)行為確定主題——教學(xué)材料的選擇、教學(xué)中的提問(wèn)、教學(xué)媒體的使用、教學(xué)評(píng)價(jià)語(yǔ)言、課堂教學(xué)調(diào)控行為等;也可以從學(xué)生的學(xué)習(xí)方式確定主題——探究性學(xué)習(xí)、問(wèn)題解決學(xué)習(xí)、合作學(xué)習(xí)、實(shí)踐性活動(dòng)等。另外從學(xué)科特點(diǎn)、教學(xué)內(nèi)容等都可以確定研究的主題。

研究者要了解當(dāng)前教學(xué)的大背景,教改的大方向,要熟悉相關(guān)的《課程標(biāo)準(zhǔn)》和有針對(duì)性地作一些理論準(zhǔn)備。還要通過(guò)有關(guān)的調(diào)查,搜集詳盡的材料(如閱讀教師的教學(xué)設(shè)計(jì),進(jìn)行訪談等),同時(shí)初步確定案例研究的方向、研究任務(wù),即初步確定案例的內(nèi)容是關(guān)于教學(xué)策略、學(xué)生行為或是教學(xué)技能的研究。

一般來(lái)說(shuō),案例研究主題的確定往往需要思考下面一些問(wèn)題:即研究的事件是否對(duì)于自我發(fā)現(xiàn)更有潛力?選擇的事件對(duì)學(xué)生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現(xiàn)了前人(或自己)過(guò)去成功的行為嗎?事件呈現(xiàn)的是一個(gè)你不能確定怎樣解決的問(wèn)題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺(jué)不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個(gè)與道德或道義上相關(guān)的問(wèn)題嗎?研究的主題如果反映以上的一些內(nèi)容,那么這樣的案例研究在自我學(xué)習(xí)、內(nèi)省和深層次理解方面就可能更加富有成效。

高中數(shù)學(xué)教學(xué)案例研究的主題內(nèi)容主要集中在三方面:(1)學(xué)科特點(diǎn)的體現(xiàn):如數(shù)學(xué)思想方法的教學(xué)、數(shù)學(xué)思維品質(zhì)的培養(yǎng)、本質(zhì)屬性的抽象、數(shù)學(xué)結(jié)論的推廣等;(2)學(xué)生數(shù)學(xué)學(xué)習(xí)規(guī)律的探究:如數(shù)學(xué)學(xué)習(xí)習(xí)慣、解決問(wèn)題的思維方式、獨(dú)立思考與合作學(xué)習(xí)等;(3)教師專(zhuān)業(yè)知識(shí)的提升:如數(shù)學(xué)板書(shū)與電子屏幕的展示對(duì)學(xué)生思維的影響、數(shù)學(xué)語(yǔ)言的訓(xùn)練對(duì)人們思維的影響、數(shù)學(xué)知識(shí)模式化教學(xué)的優(yōu)劣等。

2.案例研究的基本方法

(1)課堂觀察。觀察方法是指研究者按照一定的目的和計(jì)劃,在課堂教學(xué)活動(dòng)的自然狀態(tài)下,用自己的感官和輔助工具對(duì)研究對(duì)象進(jìn)行觀察研究的一種方法。它可以是教師自己對(duì)教學(xué)對(duì)象——學(xué)生,在課堂活動(dòng)中的片斷進(jìn)行觀察,也可以由其他教師來(lái)實(shí)施觀察,這兩種觀察的目的都是為了掌握課堂教學(xué)中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽(tīng)手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對(duì)觀察的資料,可以逐字逐句整理成課堂教學(xué)實(shí)錄、教學(xué)程序表、提問(wèn)技巧水平檢核表、提問(wèn)行為類(lèi)型頻次表、課堂教學(xué)時(shí)間分配表等,以便以后繼續(xù)分析案例提供翔實(shí)的原始材料。

(2)訪談與調(diào)查。對(duì)一些課堂教學(xué)不能觀察到的師生內(nèi)心活動(dòng),如教師教學(xué)的目的、教學(xué)程序的意圖、教學(xué)手段的運(yùn)用以及教學(xué)達(dá)標(biāo)的成效等一些需要進(jìn)一步了解的問(wèn)題,可以通過(guò)與執(zhí)教教師的交談以及和學(xué)生的座談,以豐富和充實(shí)課堂教學(xué)觀察的材料;對(duì)學(xué)生在課堂教學(xué)活動(dòng)中回答問(wèn)題的心理狀態(tài)、解題思路等問(wèn)題,也可以在課后做一些問(wèn)卷調(diào)查;對(duì)學(xué)生達(dá)標(biāo)的成度、效度,也可以作一些測(cè)試調(diào)查。從這些訪談、調(diào)查的材料中,再分析課堂教學(xué)的現(xiàn)象,不難發(fā)現(xiàn)造成各種課堂現(xiàn)象與教師教學(xué)行為之間的因果關(guān)系,然后再具體尋找在哪個(gè)教學(xué)環(huán)節(jié)中出現(xiàn)問(wèn)題,從中提煉出解決問(wèn)題的對(duì)策。

(3)文獻(xiàn)分析。文獻(xiàn)分析是通過(guò)查閱文獻(xiàn)資料,從過(guò)去和現(xiàn)在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學(xué)現(xiàn)象的理論依據(jù),從而增強(qiáng)案例分析的說(shuō)服力。當(dāng)然,對(duì)廣大第一線教師而言,這里所運(yùn)用的文獻(xiàn)分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現(xiàn)象,而是通過(guò)有關(guān)教育理論文獻(xiàn)的查閱,去進(jìn)一步解讀課堂教學(xué)的活動(dòng),挖掘案例中的教育思想。如在數(shù)學(xué)教學(xué)中,我們常常通過(guò)學(xué)生的動(dòng)手操作來(lái)獲得有關(guān)的數(shù)學(xué)概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問(wèn)題,查閱、分析有關(guān)文獻(xiàn)資料,從學(xué)習(xí)中提高研究者自身的理論水平。

(二)案例研究報(bào)告的撰寫(xiě)

1.常見(jiàn)的案例報(bào)告格式

撰寫(xiě)教學(xué)案例,結(jié)構(gòu)可以靈活多樣,并非要千篇一律、一個(gè)模式,而是可以有不同的表現(xiàn)形式,如“案例背景——案例描述——案例分析”、“案例過(guò)程——案例反思”、“課例——問(wèn)題——分析”、“主題與背景——情景描述——問(wèn)題討論——詮釋與研究”等。當(dāng)前,國(guó)內(nèi)外課堂教學(xué)案例編寫(xiě)的格式有多種多樣。但不管何種編寫(xiě)格式,它們都有兩個(gè)共同的特點(diǎn):一是對(duì)案例的客觀描述;二是對(duì)案例中所述問(wèn)題、關(guān)鍵教學(xué)事件等的分析。

下面介紹兩種常用的案例編寫(xiě)的格式:

(1)“描述+分析”式

此格式的特點(diǎn)是將整個(gè)案例分為兩大部分,前半部分主要為描述課堂教學(xué)活動(dòng)的情景,后半部分主要針對(duì)情景中的一個(gè)問(wèn)題進(jìn)行理論分析并獲得結(jié)論。案例的描述一般是把課堂教學(xué)活動(dòng)中的.某一片斷像講故事一樣原原本本地、具體生動(dòng)地描繪出來(lái)。描述的形式可以是一串問(wèn)答式的課堂對(duì)話,也可以概括式地?cái)⑹?,主要是提供一個(gè)或一連串課堂教學(xué)疑難的問(wèn)題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對(duì)描述的情景發(fā)表個(gè)人或多人的感受,同時(shí)加以理論的分析與說(shuō)明。分析方法可以是對(duì)描述中提出的一個(gè)問(wèn)題,從幾個(gè)方面加以分析:也可以是對(duì)描述中的幾個(gè)問(wèn)題,集中從一個(gè)方面加以分析。分析的目的是要從描述的情景中提煉問(wèn)題的本質(zhì),講述理論的解釋?zhuān)鞔_正確的方法,最終獲得對(duì)關(guān)鍵教學(xué)事件的正確把握。

(2)“背景+描述+問(wèn)題+詮釋”式

此格式是一種要求比較高的編寫(xiě)格式,而且,它在實(shí)際教學(xué)中的作用也更大。通常它將整個(gè)案例分為四個(gè)部分:

A.主題與背景

主題是關(guān)鍵教學(xué)事件中所反映的案例主要觀點(diǎn),也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點(diǎn)、時(shí)間、人物的一些基本情況。當(dāng)然,這部分的內(nèi)容不宜很長(zhǎng),只需提綱挈領(lǐng)敘述清楚即可。

B.情景描述

與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學(xué)活動(dòng)。

C.問(wèn)題討論

這是根據(jù)主題要求與情景描述,進(jìn)行的分析、歸納、總結(jié)與提煉,包括學(xué)科知識(shí)的要點(diǎn)、教學(xué)法和情景特點(diǎn)以及案例的說(shuō)明與注意事項(xiàng)。這部分內(nèi)容主要是為案例教學(xué)服務(wù)的,目的是提高教師的認(rèn)識(shí)水平與學(xué)生主動(dòng)學(xué)習(xí)的能力。不同的教學(xué)觀念,不同的教學(xué)手段,所提出的問(wèn)題也不同。對(duì)案例中所提出的主題以及情景描述中提出的問(wèn)題闡述自己的見(jiàn)解。

D.詮釋與研究

這部分主要是用教育理論對(duì)案例情景作多角度的解讀。它包括對(duì)課堂教學(xué)行為的技術(shù)資料、課堂教學(xué)實(shí)錄以及教學(xué)活動(dòng)背后的故事等作理論上的分析。例如,在課堂教學(xué)中,我們??吹竭@樣的現(xiàn)象,課堂教學(xué)的效果高于預(yù)期的目標(biāo),反之教師期望的目標(biāo)學(xué)生沒(méi)有達(dá)到或有所偏離,教學(xué)內(nèi)容呈現(xiàn)的先后與學(xué)生理解的程度、教學(xué)方法運(yùn)用與學(xué)生內(nèi)在動(dòng)機(jī)的激發(fā)等環(huán)節(jié)存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過(guò)詮釋?zhuān)诰蜻@些事件背后的內(nèi)在思想,揭示其教育規(guī)律就顯得十分的必要。

2.案例報(bào)告撰寫(xiě)的關(guān)鍵

(1)掌握四個(gè)原則。要寫(xiě)好教學(xué)案例,除了平時(shí)多積累素材,學(xué)習(xí)他人的案例作品以提高寫(xiě)作技巧外,還應(yīng)把握以下四點(diǎn):

A.主題性原則:要有捕捉關(guān)鍵教學(xué)事件的意識(shí),以此確定案例研究的主題。為此要注意了解新的課程改革的動(dòng)向、把握適合時(shí)代要求的數(shù)學(xué)教育方式、明確學(xué)生數(shù)學(xué)學(xué)習(xí)的難點(diǎn)和重點(diǎn),尋找數(shù)學(xué)教師專(zhuān)業(yè)發(fā)展的途徑與規(guī)律。報(bào)告圍繞主題進(jìn)行情景描述和獲得解決問(wèn)題的策略。這種描述不是簡(jiǎn)單的教學(xué)活動(dòng)實(shí)錄,要反映事件發(fā)生的過(guò)程,重點(diǎn)描述反映關(guān)鍵教學(xué)事件的變化和戲劇化的情境,猶如記敘文寫(xiě)作,突出主題,詳寫(xiě)重點(diǎn),雕刻高潮。

案例鮮明的主題通常關(guān)系到教學(xué)的核心理念、常見(jiàn)問(wèn)題、處理方法等等,可以說(shuō),主題就是案例的靈魂。而主題的最佳表現(xiàn)形式就是文題直接體現(xiàn)主題。因此,設(shè)計(jì)主題就要有新意、有時(shí)代感,通俗地說(shuō)就是與眾不同,要有獨(dú)特見(jiàn)解、獨(dú)家發(fā)現(xiàn)。來(lái)源于實(shí)踐的教學(xué)案例并非都有同等價(jià)值,關(guān)鍵要看撰寫(xiě)者對(duì)實(shí)踐的發(fā)展與理論的升華程度,包括對(duì)題目的推敲。如有的教學(xué)案例重點(diǎn)描述了有戲劇性的情節(jié),用了“細(xì)節(jié)決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng)意的題目《“導(dǎo)之有方”方能“導(dǎo)之有效”》、《跳出數(shù)學(xué)教數(shù)學(xué)》、《在數(shù)學(xué)的疑難處悟成長(zhǎng)》、《捕捉資源因勢(shì)利導(dǎo)》等等,讓人一看題目就有閱讀的欲望。實(shí)踐證明,在寫(xiě)作案例時(shí),選擇有感悟、有新意的內(nèi)容,在明確主題,恰當(dāng)擬題后再動(dòng)筆,才能寫(xiě)出高質(zhì)量的案例。

B.理論性原則:解決問(wèn)題的策略中應(yīng)當(dāng)蘊(yùn)含一定的教育基本原理和教育思想。實(shí)際是將自己對(duì)教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學(xué)生做了什么,參與程度,投入程度如何,教師如何引導(dǎo)點(diǎn)撥,師生心理、行為變化情況等,無(wú)不體現(xiàn)教師的教學(xué)思想和教育基本原理。

C.敘事性原則:案例報(bào)告的書(shū)寫(xiě)方式是敘事式,它不同于論述式。敘事方式必須以課堂教學(xué)生動(dòng)的事實(shí)為主要情節(jié),可以?shī)A敘夾議,也可以選擇情景片段,可以是一節(jié)課中的情景,也可以是圍繞一個(gè)主題的幾節(jié)課的情景片段。

D.學(xué)科性原則:數(shù)學(xué)案例報(bào)告一定要體現(xiàn)學(xué)科的特征,要有較深刻的理性思考,要反映數(shù)學(xué)的基本思想與方法,要符合課程標(biāo)準(zhǔn),滿足教材內(nèi)容的呈現(xiàn)方法,積極培養(yǎng)良好的思維習(xí)慣。就是撰寫(xiě)者的教育思想和教育理念在教學(xué)實(shí)踐中具體體現(xiàn)。

(2)用好四種表述。教學(xué)案例的表述方法很多,可以歸納為以下四種方法:

A.故事式陳述法:就是教學(xué)全程或某一精彩教學(xué)片段實(shí)錄,包括教師和學(xué)生的一言一行。陳述時(shí),根據(jù)操作程序作一點(diǎn)“簡(jiǎn)評(píng)”,最后作“總評(píng)”。

B.以案說(shuō)理:對(duì)教學(xué)過(guò)程進(jìn)行陳述時(shí),舍去與文題不相關(guān)或不重要的部分,并強(qiáng)化與主題相關(guān)的重要情節(jié),尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長(zhǎng)篇幅的理性思考。

C.圖表展示法:用圖表進(jìn)行統(tǒng)計(jì)的形式體現(xiàn)撰寫(xiě)者的教育思想,給人以一目了然的感覺(jué),幫助讀者迅速了解撰寫(xiě)者的寫(xiě)作意圖,是常用的一種案例撰寫(xiě)方法。比如,描述學(xué)生的參與人數(shù),投入程度,解決問(wèn)題的質(zhì)量等多個(gè)問(wèn)題,都可以在一張或數(shù)張圖表上用百分比或個(gè)(次)數(shù)進(jìn)行統(tǒng)計(jì)。在每一張圖表后,應(yīng)有一段“分析”或“結(jié)論”,將撰寫(xiě)者的教學(xué)理念進(jìn)行理性闡述,亦可在圖表展示后,總的提出自己對(duì)案例的分析和建議。

D.分析討論法:在撰寫(xiě)時(shí),應(yīng)汲取分析討論中最精彩的部分做深入、細(xì)致的全面記錄,最后撰寫(xiě)者還必須對(duì)討論情況做一分析,或提出一些值得今后進(jìn)一步思考的問(wèn)題。

3.優(yōu)秀案例的特征

(1)時(shí)代性:一個(gè)好的案例描述的是現(xiàn)實(shí)生活場(chǎng)景——案例的敘述要把事件置于一個(gè)時(shí)空框架之中,應(yīng)該以關(guān)注今天所面臨的疑難問(wèn)題為著眼點(diǎn),至少應(yīng)該是近年發(fā)生的事情,展示的整個(gè)事實(shí)材料應(yīng)該與整個(gè)時(shí)代及教學(xué)背景相照應(yīng),這樣的案例讀者更愿意接觸。一個(gè)好的案例可以使讀者有身臨其境的感覺(jué),并對(duì)案例所涉及的人產(chǎn)生移情作用。

(2)真實(shí)性:一個(gè)好的案例應(yīng)該包括從案例所反映的對(duì)象那里引述的材料——案例寫(xiě)作必須持一種客觀的態(tài)度,因此可引述一些口頭的或書(shū)面的、正式的或非正式的材料,如對(duì)話、筆記、信函等,以增強(qiáng)案例的真實(shí)感和可讀性。重要的事實(shí)性材料應(yīng)注明資料來(lái)源。

(3)適用性:一個(gè)好的案例需要針對(duì)面臨的疑難問(wèn)題提出解決辦法——案例不能只是提出問(wèn)題,它必須提出解決問(wèn)題的主要思路、具體措施,并包含著解決問(wèn)題的詳細(xì)過(guò)程,這應(yīng)該是案例寫(xiě)作的重點(diǎn)。如果一個(gè)問(wèn)題可以提出多種解決辦法的話,那么最為適宜的方案,就應(yīng)該是與特定的背景材料相關(guān)最密切的那一個(gè)。如果有包治百病、普遍適用的解決問(wèn)題的辦法,那么案例這種形式就不必要存在了。

(4)反思性:一個(gè)好的案例需要有對(duì)已經(jīng)做出的解決問(wèn)題的決策的評(píng)價(jià)——評(píng)價(jià)是為了給新的決策提供參考點(diǎn)??稍诎咐拈_(kāi)頭或結(jié)尾寫(xiě)下案例作者對(duì)自己解決問(wèn)題策略的評(píng)論,以點(diǎn)明案例的基本論點(diǎn)及其價(jià)值。

三、案例研究過(guò)程中需注意的問(wèn)題

1.選材面過(guò)窄。從內(nèi)容上看,多數(shù)案例是關(guān)于課堂教學(xué)甚至局限于一節(jié)課的研究,往往不能說(shuō)明問(wèn)題,或者在一節(jié)課中,也只會(huì)從簡(jiǎn)單的對(duì)話分析問(wèn)題,做不到全方位、多角度。這說(shuō)明教師對(duì)教學(xué)情境的豐富性、復(fù)雜性和聯(lián)系性認(rèn)識(shí)不夠。

2.缺乏典型性。有的案例對(duì)教學(xué)實(shí)踐沒(méi)有挖掘與反思,隨意摘取一些教學(xué)片段泛泛而談、人云亦云,沒(méi)有實(shí)用價(jià)值。不能夠通過(guò)對(duì)某一事件現(xiàn)象的分析、處理、詮釋?zhuān)_(dá)到舉一反三的效果,這樣的案例對(duì)他人沒(méi)什么借鑒作用。

3.主題不明確。主要體現(xiàn)為:

(1)主題渙散。有的案例象記流水帳,沒(méi)有根據(jù)需要進(jìn)行恰當(dāng)?shù)娜∩?,看不出作者要反映、探討什么?wèn)題,缺乏指導(dǎo)性、創(chuàng)新性和參考性。

(2)定題過(guò)于隨意。有的案例直接用案例研究依據(jù)的文題為題目,如《“三角函數(shù)”教學(xué)案例》、《“拋物線”教學(xué)案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。

4.結(jié)構(gòu)不合理。案例作為一種文體,有它自己的寫(xiě)作結(jié)構(gòu),只有優(yōu)化案例的結(jié)構(gòu),才能增強(qiáng)案例的可讀性和指導(dǎo)性。如寫(xiě)成一般的教學(xué)設(shè)計(jì),一般包括“備課思路、教學(xué)目標(biāo)、教學(xué)重點(diǎn)、教學(xué)方法、課前準(zhǔn)備、教學(xué)內(nèi)容、教學(xué)過(guò)程”等內(nèi)容;寫(xiě)成教學(xué)實(shí)錄,把一堂課從頭到尾詳盡地記錄下來(lái),再寫(xiě)上作者的看法;重記錄輕分析,過(guò)程描述多,評(píng)析少等等。沒(méi)有創(chuàng)新,平淡無(wú)趣,看不出案例研究和反映的問(wèn)題。

5.描述與分析脫節(jié)。有的案例描述與分析矛盾,讓人不知所云;有時(shí)反映的是一種觀點(diǎn),分析闡明的是另一種觀點(diǎn),雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無(wú)物。

高中數(shù)學(xué)教案教案篇13

1.樹(shù)立新型的數(shù)學(xué)教學(xué)觀念,明確數(shù)學(xué)的實(shí)用意義

高中數(shù)學(xué)是人類(lèi)對(duì)社會(huì)認(rèn)識(shí)的重要方面,也是一門(mén)極具實(shí)用性的基礎(chǔ)性學(xué)科。教師在進(jìn)行數(shù)學(xué)教學(xué)的過(guò)程中,要將數(shù)學(xué)知識(shí)背后蘊(yùn)含的文化背景與文化知識(shí)傳達(dá)給學(xué)生,讓學(xué)生從基礎(chǔ)的數(shù)學(xué)知識(shí)中掌握真正的數(shù)學(xué)思維,學(xué)會(huì)運(yùn)用數(shù)學(xué)技巧解決生活中的實(shí)際問(wèn)題,要讓學(xué)生明確數(shù)學(xué)所蘊(yùn)含的社會(huì)意義,以更好地培養(yǎng)數(shù)學(xué)理念,使學(xué)生更好地運(yùn)用數(shù)學(xué),對(duì)數(shù)學(xué)產(chǎn)生真正的興趣。

2.提升教師的教學(xué)素質(zhì),轉(zhuǎn)變教師角色定位

在新課程標(biāo)準(zhǔn)下,教師在數(shù)學(xué)教學(xué)中的角色由控制者轉(zhuǎn)變?yōu)橐龑?dǎo)者。因此,教師必須要學(xué)會(huì)提升自身的素質(zhì),轉(zhuǎn)變教學(xué)觀念,通過(guò)良好的師風(fēng)師德引導(dǎo)學(xué)生積極投入到學(xué)習(xí)過(guò)程中。學(xué)校要定期進(jìn)行培訓(xùn),加強(qiáng)學(xué)校之間的交流,通過(guò)互相學(xué)習(xí)、合作提升教師的素質(zhì),促進(jìn)教師角色的轉(zhuǎn)變。教師要在教學(xué)的過(guò)程中重視對(duì)學(xué)生個(gè)性的激發(fā)以及學(xué)生創(chuàng)新精神的鼓勵(lì),教師要引導(dǎo)學(xué)生主動(dòng)發(fā)表自身對(duì)學(xué)習(xí)問(wèn)題的看法,要讓學(xué)生成為真正的主人,促進(jìn)學(xué)生多元思維的發(fā)展。

3.合理運(yùn)用信息技術(shù),培養(yǎng)學(xué)生的科學(xué)思維

高中數(shù)學(xué)教學(xué)過(guò)程中,信息技術(shù)的應(yīng)用必不可少,但是也不能過(guò)分強(qiáng)調(diào)信息技術(shù)的作用。教師在教學(xué)過(guò)程中,要充分把握數(shù)學(xué)知識(shí)的特點(diǎn),要將抽象的數(shù)學(xué)概念、知識(shí)框架等內(nèi)容通過(guò)多媒體技術(shù)轉(zhuǎn)化為形象具體的畫(huà)面以利于學(xué)生的理解和吸收,但是對(duì)于那些需要進(jìn)行基礎(chǔ)性訓(xùn)練、推理論證的問(wèn)題,要讓學(xué)生親手進(jìn)行實(shí)踐分析。教師可以利用科學(xué)性的計(jì)算器或者技術(shù)教育平臺(tái),推廣計(jì)算機(jī)技術(shù)在數(shù)學(xué)領(lǐng)域的運(yùn)用,要充分重視學(xué)生的地域性特征,在學(xué)生對(duì)計(jì)算機(jī)技術(shù)已經(jīng)形成基本認(rèn)識(shí)的基礎(chǔ)上進(jìn)行新課標(biāo)內(nèi)容的講解和分析,防止出現(xiàn)盲目追求進(jìn)度,忽視學(xué)生基礎(chǔ)等問(wèn)題的發(fā)生。

高中數(shù)學(xué)教案教案篇14

教學(xué)內(nèi)容:習(xí)慣的養(yǎng)成(養(yǎng)成教育)

教學(xué)目標(biāo):

1.用輕松親切的語(yǔ)調(diào),讓孩子們對(duì)小學(xué)生活有一個(gè)感性的認(rèn)識(shí)。

2.培養(yǎng)衛(wèi)生習(xí)慣、生活習(xí)慣、學(xué)習(xí)習(xí)慣、愛(ài)護(hù)公物的習(xí)慣。

3.通過(guò)學(xué)習(xí),讓孩子們對(duì)小學(xué)生活滿懷美好的憧憬。

教學(xué)過(guò)程:

師:小朋友們好!首先祝賀小朋友們光榮地成為了一名小學(xué)生!老師看到每一個(gè)孩子的笑臉,真高興啊,你們就像花兒一樣,老師非常喜歡你們!

(在黑板上寫(xiě)一個(gè)大大的“聰”字)

師:認(rèn)識(shí)這個(gè)字嗎?

生:聰!

師:對(duì),聰明的聰。你們想不想成為一個(gè)聰明的孩子?

生:想!

師:怎么樣才能成為聰明的孩子呢?我們來(lái)看,“聰”字是由耳朵、眼睛、嘴巴,還有一個(gè)“心”字組成的。小朋友們,我們只要會(huì)用耳朵聽(tīng),會(huì)用眼睛看,會(huì)用嘴巴說(shuō),再會(huì)用心去做,你就一定會(huì)是一個(gè)聰明的好孩子。你能做到嗎?下面我們開(kāi)始試一試?yán)?

首先是會(huì)用耳朵聽(tīng)。聽(tīng)老師說(shuō)話要專(zhuān)心,不能東張西望,聽(tīng)同學(xué)發(fā)言,要注意聽(tīng)他回答對(duì)了沒(méi)有,如果你還有想法,就舉手說(shuō)出你的想法。誰(shuí)聽(tīng)懂了?(試問(wèn)學(xué)生)

第二要會(huì)用眼睛看。你看到我們的教室干凈嗎?那是昨天我和曾老師花了很長(zhǎng)時(shí)間打掃的。那綠色的很新的墻群是我和曾老師親自粉刷的。所以,請(qǐng)同學(xué)們不要用手去摸,更不要用腳去踢,就像愛(ài)護(hù)我們的眼睛一樣地去愛(ài)護(hù)它,誰(shuí)能做得到?

第三要會(huì)用嘴巴說(shuō)話。上課時(shí),老師提問(wèn)后,請(qǐng)你把小手舉起來(lái),回答問(wèn)題要響亮,讓全班小朋友都聽(tīng)得到,每個(gè)小朋友都要會(huì)用你的小嘴巴表達(dá)哦!

我們會(huì)用耳朵聽(tīng),會(huì)用眼睛看,會(huì)用嘴巴說(shuō),是不是就很聰明了呢?不,最重要的是要會(huì)用心去聽(tīng),會(huì)用心去看,會(huì)用心去說(shuō),一句話,就是做什么事都要用心去做,才是真正聰明的孩子。

聰明的孩子要做到以下幾點(diǎn):

一、愛(ài)護(hù)公物。學(xué)校的一草一木,一桌一椅,學(xué)校里所有的東西都要愛(ài)護(hù)。不踩花,不摘花,不踩草坪,不摘樹(shù)葉,不在桌子上亂刻亂畫(huà),不在教室里追逐打鬧。我們學(xué)校的操場(chǎng)正在施工,請(qǐng)小朋友們不要到操場(chǎng)上玩耍。

二、講究衛(wèi)生。上廁所時(shí),不能在廁所外面隨處大小便,要進(jìn)到廁所里指定的位置,你能做到了嗎?(課后,帶隊(duì)去看男女廁所的位置)在家里,每天早晚要刷牙,勤洗澡,勤換衣服,勤剪指甲。不隨地吐痰,預(yù)防傳染病。

三、愛(ài)惜糧食。早餐要吃完,午托的中餐要吃完,要多少就吃多少。今天,老師想看看誰(shuí)是最?lèi)?ài)惜糧食的好孩子。(放晚學(xué)前總結(jié))

四、排路隊(duì)時(shí)要做到快、靜、齊。教給大家我編的兒歌:“排路隊(duì),手牽手,不說(shuō)話,排整齊?!弊叱鲂iT(mén)后,如果找不到家長(zhǎng),不要自己回,要找到老師,或者回到校門(mén)口等家長(zhǎng)來(lái)接。

五、我們是小學(xué)生了,不能帶玩具來(lái)學(xué)校玩,也不要帶錢(qián)來(lái)買(mǎi)零食吃。現(xiàn)在天氣炎熱,我們每天要從家里自己帶來(lái)一瓶水,多喝水,既清嗓來(lái)又防病,聽(tīng)明白了嗎?我相信我們一(7)班的小朋友一定會(huì)成為一個(gè)聰明的講文明的小學(xué)生。

后記:今天加班打印各種材料,包括開(kāi)學(xué)初的養(yǎng)成教案。不知不覺(jué)已到教師節(jié)。祝各位同行教師節(jié)快樂(lè)!天天開(kāi)心!

高中數(shù)學(xué)教案教案篇15

教學(xué)目標(biāo):

1、掌握向量的加法運(yùn)算,并理解其幾何意義;

2、會(huì)用向量加法的三角形法則和平行四邊形法則作兩個(gè)向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問(wèn)題的能力;

3、通過(guò)將向量運(yùn)算與熟悉的數(shù)的運(yùn)算進(jìn)行類(lèi)比,使學(xué)生掌握向量加法運(yùn)算的交換律和結(jié)合律,并會(huì)用它們進(jìn)行向量計(jì)算,滲透類(lèi)比的數(shù)學(xué)方法;

教學(xué)重點(diǎn):會(huì)用向量加法的三角形法則和平行四邊形法則作兩個(gè)向量的和向量。

教學(xué)難點(diǎn):理解向量加法的定義。

學(xué)法:

數(shù)能進(jìn)行運(yùn)算,向量是否也能進(jìn)行運(yùn)算呢?數(shù)的加法啟發(fā)我們,從運(yùn)算的角度看,位移的合成、力的合成可看作向量的加法。借助于物理中位移的合成、力的合成來(lái)理解向量的加法,讓學(xué)生順理成章接受向量的加法定義。結(jié)合圖形掌握向量加法的三角形法則和平行四邊形法則。聯(lián)系數(shù)的運(yùn)算律理解和掌握向量加法運(yùn)算的交換律和結(jié)合律。

教具:多媒體或?qū)嵨锿队皟x,尺規(guī)

授課類(lèi)型:新授課

教學(xué)思路:

一、設(shè)置情景:

1、復(fù)習(xí):向量的定義以及有關(guān)概念

強(qiáng)調(diào):向量是既有大小又有方向的量。長(zhǎng)度相等、方向相同的向量相等。因此,我們研究的向量是與起點(diǎn)無(wú)關(guān)的自由向量,即任何向量可以在不改變它的方向和大小的前提下,移到任何位置

2、情景設(shè)置:

(1)某人從A到B,再?gòu)腂按原方向到C,

則兩次的位移和:AB?BC?AC

(2)若上題改為從A到B,再?gòu)腂按反方向到C,

則兩次的位移和:AB?BC?AC

(3)某車(chē)從A到B,再?gòu)腂改變方向到C,

則兩次的位移和:AB?BC?ACAB

C

(4)船速為AB,水速為BC,則兩速度和:AB?BC?AC

二、探索研究:

向量的加法:求兩個(gè)向量和的運(yùn)算,叫做向量的加法。ABCABC

1528984