2024年職高數(shù)學(xué)知識點

嘉欣0 分享 時間:

在平日的學(xué)習(xí)中,大家最不陌生的就是知識點吧!知識點是傳遞信息的基本單位,知識點對提高學(xué)習(xí)導(dǎo)航具有重要的作用。以下是小編為大家?guī)淼?024年職高數(shù)學(xué)知識點整理,歡迎參閱呀!

2024年職高數(shù)學(xué)知識點

2024年職高數(shù)學(xué)知識點整理

空間兩條直線只有三種位置關(guān)系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

2、若從有無公共點的角度看可分為兩類:

(1)有且僅有一個公共點——相交直線;

(2)沒有公共點——平行或異面

直線和平面的位置關(guān)系:

直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

①直線在平面內(nèi)——有無數(shù)個公共點

②直線和平面相交——有且只有一個公共點

直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

集合有關(guān)概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1.元素的確定性;

2.元素的互異性;

3.元素的無序性.

3、集合的表示:

(1){?}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(2).用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}4

4.集合的表示方法:列舉法與描述法。

常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集N__或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

5.關(guān)于“屬于”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表

示某些對象是否屬于這個集合的方法。

6、集合的分類:

(1).有限集含有有限個元素的集合

(2).無限集含有無限個元素的集合

(3).空集不含任何元素的集合例:{x|x2=-5}=Φ

集合間的基本關(guān)系

1.“包含”關(guān)系—子集注意:A?B有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,記作A?

2.“相等”關(guān)系:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

①任何一個集合是它本身的子集。即A?A

②如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同時B?A那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

集合的運算

1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

記作A∩B(讀作"A交B"),即A∩B={x|x∈A,且x∈B}.

2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作"A并B"),即A∪B={x|x∈A,或x∈B}.

3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,

A∪φ=A,A∪B=B∪A.

4、全集與補集

(1)補集:設(shè)S是一個集合,A是S的一個子集(即A?S),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作:CSA即CSA={x?x?S且x?A}

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,看作一個全集。通常用U來表示。

(3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函數(shù)的有關(guān)概念合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

1.能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對數(shù)式的真數(shù)必須大于零;

(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數(shù)為零底不可以等于零

(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

2.構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域

再注意:

(1)由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))

(2)兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:

①表達(dá)式相同;

②定義域一致(兩點必須同時具備)

3.區(qū)間的概念

(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

(2)無窮區(qū)間;

(3)區(qū)間的數(shù)軸表示.

4.映射一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A?B為從集合A到集合B的一個映射。記作“f:A?B”

給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象

說明:函數(shù)是一種特殊的映射,映射是一種特殊的對應(yīng)

①集合A、B及對應(yīng)法則f是確定的;

②對應(yīng)法則有“方向性”,即強調(diào)從集合A到集合B的對應(yīng),它與從B到A的對應(yīng)關(guān)系一般是不同的;

③對于映射f:A→B來說,則應(yīng)滿足:

(Ⅰ)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;

(Ⅱ)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;

(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。

5.常用的函數(shù)表示法:解析法:圖象法:列表法:

6.分段函數(shù)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

(1)分段函數(shù)是一個函數(shù),不要把它誤認(rèn)為是幾個函數(shù);

(2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.

7.函數(shù)單調(diào)性

(1).設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當(dāng)x1

如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當(dāng)x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

注意:函數(shù)的單調(diào)性是在定義域內(nèi)的某個區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);

(2)圖象的特點如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

(A)定義法:○1任取x1,x2∈D,且x1

(B)圖象法(從圖象上看升降)_注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

8.函數(shù)的奇偶性

(1)一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

(2).一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

注意:○1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。

2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,○

則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱).

(3)具有奇偶性的函數(shù)的圖象的特征

偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.

總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:○1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點對稱;○2確定f(-x)與f(x)的關(guān)系;○3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).9、函數(shù)的解析表達(dá)式

(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

(2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構(gòu)造時,可用待定系數(shù)法;已知復(fù)合函數(shù)f[g(x)]的表達(dá)式時,可用換元法,這時要注意元的取值范圍;當(dāng)已知表達(dá)式較簡單時,也可用湊配法;若已知抽象函數(shù)表達(dá)式,則常用解方程組消參的方法求出f(x)。

補充不等式的解法與二次函數(shù)(方程)的性質(zhì)

如何養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣

制定計劃,成為習(xí)慣

無論是學(xué)習(xí)哪一科,明確的目標(biāo)計劃都是最基本的方法,也是要被大家說爛了的提高成績的基本。

數(shù)學(xué)也是一樣,雖然公式多,定義多,圖形多,但完全不影響制定數(shù)學(xué)的學(xué)習(xí)計劃。學(xué)習(xí)是一個長久性的打算,因此在制定數(shù)學(xué)學(xué)習(xí)內(nèi)容的過程中可以盡量的詳細(xì)一點。

比如說每天做多少道題,掌握多少個公式,記住幾個定義等等。這樣才是學(xué)好高中數(shù)學(xué)應(yīng)該做的步驟。

其次就是每天按照自己給自己的規(guī)定去做,不要想著偷懶,今天不愛做就留給明天,想著明天多做點補回來。

這種想法是非常錯誤的,今天的任務(wù)就要今天完成,想著自己為了提高數(shù)學(xué)成績,無論如何都要努力。

預(yù)習(xí)與復(fù)習(xí)相結(jié)合

預(yù)習(xí)幫助大家在數(shù)學(xué)課上對知識有一個大概的了解,也對老師要講的內(nèi)容有個先知,不至于驚訝驚訝老師接下來要講什么。

而復(fù)習(xí)就是對這一堂課的數(shù)學(xué)學(xué)習(xí)進行一個驗收和反饋,檢驗自己是否學(xué)會數(shù)學(xué)老師講的內(nèi)容;反饋自己的學(xué)習(xí)成效,及時找到自己數(shù)學(xué)學(xué)習(xí)的問題以便及時解決。

這樣在學(xué)習(xí)新的數(shù)學(xué)知識的時候就不會帶著之前留下來的疑問了。這對于學(xué)好高中數(shù)學(xué),提高數(shù)學(xué)成績非常有幫助。

高質(zhì)量的完成作業(yè)

作業(yè)是一個很好查缺補漏的過程,因此同學(xué)們想要學(xué)好數(shù)學(xué),就一定要認(rèn)真完成作業(yè)。不要依賴不會就空著等數(shù)學(xué)老師上課講這樣的想法,這樣只會退步。

數(shù)學(xué)學(xué)習(xí)就是要不斷的動腦解決問題,所以作業(yè)要完成,還要高質(zhì)量的去完成,這樣才能不斷提高自己的能力。

不要空太多的題不寫,就只等著老師公布正確答案和解題過程,這樣一來,需要自己消化的數(shù)學(xué)問題就因為自己的懶惰變得越來越多,以至于影響之后的學(xué)習(xí)效率。

數(shù)學(xué)最常用且非常實用的學(xué)習(xí)方法

1、預(yù)習(xí)很重要:

往往被忽略,理由:沒時間,看不懂,不必要等。預(yù)習(xí)是學(xué)習(xí)的必要過程,還是提高自學(xué)能力的好方法。

2、聽講有學(xué)問:

聽分析、聽思路、聽?wèi)?yīng)用,關(guān)鍵內(nèi)容一字不漏,注意記錄。

3、做好錯題本:

每個會學(xué)習(xí)的學(xué)生都會有。最好再加個“好題本”。發(fā)現(xiàn)許多同學(xué)沒有錯題本,或者是只做不用。這樣學(xué)習(xí)效果都不好。

4、用好課外書:

正確認(rèn)識網(wǎng)絡(luò)課程和課外書籍,是副食,是幫助吸收的良藥,絕對不是課堂學(xué)習(xí)的替代品。

5、注意總結(jié)和反思:

知識點、解題方法和技巧、經(jīng)驗和教訓(xùn)。

6、接受數(shù)學(xué)思想方法的指導(dǎo):

要注意數(shù)學(xué)思想和方法的指導(dǎo),站得高,才能看得遠(yuǎn)。

關(guān)于數(shù)學(xué)常見誤區(qū)有哪些

1、被動學(xué)習(xí)

許多同學(xué)進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。

2、學(xué)不得法

老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。

3、不重視基礎(chǔ)

一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。

4、進一步學(xué)習(xí)條件不具備

高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。

如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等??陀^上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。

1553079