文小秘 > 學(xué)習(xí)資料 > 學(xué)科資料 > 數(shù)學(xué) > 初三數(shù)學(xué)圓的知識點歸納

初三數(shù)學(xué)圓的知識點歸納

立苗1147 分享 時間:

圓是指在一個平面內(nèi),一動點以一定點為中心,以一定長度為距離旋轉(zhuǎn)一周所形成的封閉曲線,標(biāo)準方程是(x-a)2+(y-b)2=r2,其中點(a,b)是圓心,r是半徑。下面是小編為大家整理的有關(guān)初三數(shù)學(xué)圓的知識點歸納,希望對你們有幫助!

初三數(shù)學(xué)圓的知識點歸納

一、圓的定義。

1、以定點為圓心,定長為半徑的點組成的圖形。

2、在同一平面內(nèi),到一個定點的距離都相等的點組成的圖形。

二、圓的各元素。

1、半徑:圓上一點與圓心的連線段。

2、直徑:連接圓上兩點有經(jīng)過圓心的線段。

3、弦:連接圓上兩點線段(直徑也是弦)。

4、弧:圓上兩點之間的曲線部分。半圓周也是弧。

(1)劣?。盒∮诎雸A周的弧。

(2)優(yōu)弧:大于半圓周的弧。

5、圓心角:以圓心為頂點,半徑為角的邊。

6、圓周角:頂點在圓周上,圓周角的兩邊是弦。

7、弦心距:圓心到弦的垂線段的長。

三、圓的基本性質(zhì)。

1、圓的對稱性。

(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。

(2)圓是中心對稱圖形,它的對稱中心是圓心。

(3)圓是旋轉(zhuǎn)對稱圖形。

2、垂徑定理。

(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

(2)推論:

平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。

平分弧的直徑,垂直平分弧所對的弦。

3、圓心角的度數(shù)等于它所對弧的度數(shù)。圓周角的度數(shù)等于它所對弧度數(shù)的一半。

(1)同弧所對的圓周角相等。

(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。

5、夾在平行線間的兩條弧相等。

6、設(shè)⊙O的半徑為r,OP=d。

7、(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。

(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。

(直角三角形的外心就是斜邊的中點。)

8、直線與圓的位置關(guān)系。d表示圓心到直線的距離,r表示圓的半徑。

直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;

直線與圓沒有交點,直線與圓相離。

9、平面直角坐標(biāo)系中,A(x1,y1)、B(x2,y2)。

則AB=(x1+x2,y1+y2)

10、圓的切線判定。

(1)d=r時,直線是圓的切線。

切點不明確:畫垂直,證半徑。

(2)經(jīng)過半徑的'外端且與半徑垂直的直線是圓的切線。

切點明確:連半徑,證垂直。

11、圓的切線的性質(zhì)(補充)。

(1)經(jīng)過切點的直徑一定垂直于切線。

(2)經(jīng)過切點并且垂直于這條切線的直線一定經(jīng)過圓心。

12、切線長定理。

(1)切線長:從圓外一點引圓的兩條切線,切點與這點之間連線段的長叫這個點到圓的切線長。

(2)切線長定理。

∵PA、PB切⊙O于點A、B

∴PA=PB,∠1=∠2。

13、內(nèi)切圓及有關(guān)計算。

(1)三角形內(nèi)切圓的圓心是三個內(nèi)角平分線的交點,它到三邊的距離相等。

(2)如圖,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三邊于點D、E、F。

求:AD、BE、CF的長。

分析:設(shè)AD=x,則AD=AF=x,BD=BE=5-x,CE=CF=7-x.

可得方程:5-x+7-x=6,解得x=3

(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

求內(nèi)切圓的半徑r。

分析:先證得正方形ODCE,

得CD=CE=r

AD=AF=b-r,BE=BF=a-r

b-r+a-r=c

得r=(b+a-c)/2

(4)S△ABC=abc/4r

14、(補充)

(1)弦切角:角的頂點在圓周上,角的一邊是圓的切線,另一邊是圓的弦。

如圖,BC切⊙O于點B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。

(2)相交弦定理。

圓的兩條弦AB與CD相交于點P,則PAPB=PCPD。

(3)切割線定理。

如圖,PA切⊙O于點A,PBC是⊙O的割線,則PA2=PBPC。

(4)推論:如圖,PAB、PCD是⊙O的割線,則PAPB=PCPD。

15、圓與圓的位置關(guān)系。

(1)外離:d>r1+r2,交點有0個;

外切:d=r1+r2,交點有1個;

相交:r1-r2

內(nèi)切:d=r1-r2,交點有1個;

內(nèi)含:0≤d

(2)性質(zhì)。

相交兩圓的連心線垂直平分公共弦。

相切兩圓的連心線必經(jīng)過切點。

16、圓中有關(guān)量的計算。

(1)弧長有L表示,圓心角用n表示,圓的半徑用R表示。

L=n(圓心角)xπ(圓周率)xr(半徑)/180

(2)扇形的面積用S表示。

S=lr/2

(3)圓錐的側(cè)面展開圖是扇形。

r為底面圓的半徑,a為母線長。

扇形的圓心角α=l/r

S側(cè)=arS全=ar+r2

中考數(shù)學(xué)圓知識點總結(jié)

1.不在同一直線上的三點確定一個圓。

2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

推論2 圓的兩條平行弦所夾的弧相等

3.圓是以圓心為對稱中心的中心對稱圖形

4.圓是定點的距離等于定長的點的集合

5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

6.圓的外部可以看作是圓心的距離大于半徑的點的集合

7.同圓或等圓的半徑相等

8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

11定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角

12.①直線L和⊙O相交 d

②直線L和⊙O相切 d=r

③直線L和⊙O相離 dr

13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑

15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角

19.如果兩個圓相切,那么切點一定在連心線上

20.①兩圓外離 dR+r ②兩圓外切 d=R+r

③.兩圓相交 R-rr)

④.兩圓內(nèi)切 d=R-r(Rr) ⑤兩圓內(nèi)含dr)

21.定理 相交兩圓的連心線垂直平分兩圓的公共弦

22.定理 把圓分成n(n≥3):

⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的.多邊形是這個圓的外切正n邊形

23.定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n

25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

27.正三角形面積√3a/4 a表示邊長

28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

29.弧長計算公式:L=n兀R/180

30.扇形面積公式:S扇形=n兀R^2/360=LR/2

31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

32.定理 一條弧所對的圓周角等于它所對的圓心角的一半

33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑


初三數(shù)學(xué)圓的知識點歸納相關(guān)文章:

初三數(shù)學(xué)圓的知識點總結(jié)歸納

最全初三數(shù)學(xué)知識點歸納總結(jié)

初三數(shù)學(xué)知識點分類復(fù)習(xí)資料總結(jié)

初三數(shù)學(xué)基礎(chǔ)知識考點總結(jié)歸納

初三總復(fù)習(xí)數(shù)學(xué)必備的知識總結(jié)歸納

最新初三數(shù)學(xué)上冊的知識點總結(jié)歸納

初三數(shù)學(xué)上冊知識點期末歸納總結(jié)

新人教版九年級數(shù)學(xué)下冊知識點總結(jié)歸納

初三數(shù)學(xué)上冊章節(jié)重要知識點總結(jié)歸納

750386