2021高考數(shù)學三角函數(shù)知識點

國雄0 分享 時間:

數(shù)學是人類知識活動留下來最具威力的知識工具,是一些現(xiàn)象的根源。數(shù)學是不變的,是客觀存在的,接下來小編在這里給大家分享一些關(guān)于數(shù)學三角函數(shù)知識點,供大家學習和參考,希望對大家有所幫助。

數(shù)學三角函數(shù)知識點

篇一:三角函數(shù)的公式

關(guān)于初中三角函數(shù)公式,在考試中用的最多的就是特殊三角度數(shù)的特殊值。如:

sin30°=1/2

sin45°=√2/2

sin60°=√3/2

cos30°=√3/2

cos45°=√2/2

cos60°=1/2

tan30°=√3/3

tan45°=1

tan60°=√3[1]

cot30°=√3

cot45°=1

cot60°=√3/3

其次就是兩角和公式,這是在初中數(shù)學考試中問答題中容易用到的三角函數(shù)公式。兩角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

除了以上??嫉某踔腥呛瘮?shù)公示之外,還有半角公式和和差化積公式也在選擇題中用到。所以同學們還是要好好掌握。

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))

ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB

- ctgA+ctgBsin(A+B)/sinAsinB

銳角三角函數(shù)公式

sin α=∠α的對邊 / 斜邊

cos α=∠α的鄰邊 / 斜邊

tan α=∠α的對邊 / ∠α的鄰邊

cot α=∠α的鄰邊 / ∠α的對邊

倍角公式

Sin2A=2SinA.CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A) )

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

三倍角公式推導

sin3a=sin(2a+a)=sin2acosa+cos2asina

輔助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

推導公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα

=(sinα/2+cosα/2)^2

=2sina(1-sin2a)+(1-2sin2a)sina

=3sina-4sin3a

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos2a-1)cosa-2(1-sin2a)cosa

=4cos3a-3cosa

sin3a

=3sina-4sin3a

=4sina(3/4-sin2a)

=4sina[(√3/2)2-sin2a]

=4sina(sin260°-sin2a)

=4sina(sin60°+sina)(sin60°-sina)

=4sina_sin[(60+a)/2]cos[(60°-a)/2]_sin[(60°-a)/2]cos[(60°-a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a

=4cos3a-3cosa

=4cosa(cos2a-3/4)

=4cosa[cos2a-(√3/2)2]

=4cosa(cos2a-cos230°)

=4cosa(cosa+cos30°)(cosa-cos30°)

=4cosa_cos[(a+30°)/2]cos[(a-30°)/2]_-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述兩式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

兩角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

和差化積

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

積化和差

sinαsinβ = [cos(α-β)-cos(α+β)] /2

cosαcosβ = [cos(α+β)+cos(α-β)]/2

sinαcosβ = [sin(α+β)+sin(α-β)]/2

cosαsinβ = [sin(α+β)-sin(α-β)]/2

誘導公式

sin(-α) = -sinα

cos(-α) = cosα

tan (—a)=-tanα

sin(π/2-α) = cosα

cos(π/2-α) = sinα

sin(π/2+α) = cosα

cos(π/2+α) = -sinα

sin(π-α) = sinα

cos(π-α) = -cosα

sin(π+α) = -sinα

cos(π+α) = -cosα

tanA= sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

誘導公式記背訣竅:奇變偶不變,符號看象限

萬能公式

sinα=2tan(α/2)/[1+tan^(α/2)]

cosα=[1-tan^(α/2)]/1+tan^(α/2)]

tanα=2tan(α/2)/[1-tan^(α/2)]

其它公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可

(4)對于任意非直角三角形,總有

tanA+tanB+tanC=tanAtanBtanC

證:

A+B=π-C

tan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得證

同樣可以得證,當x+y+z=nπ(n∈Z)時,該關(guān)系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

(9)sinα+sin(α+2π/n)+sin(α+2π_/n)+sin(α+2π_/n)+……+sin[α+2π_n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π_/n)+cos(α+2π_/n)+……+cos[α+2π_n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

篇二:同角互余角的三角函數(shù)間的關(guān)系

同角三角函數(shù)間的關(guān)系:

平方關(guān)系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·積的關(guān)系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

·倒數(shù)關(guān)系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形ABC中,

角A的正弦值就等于角A的對邊比斜邊,

余弦等于角A的鄰邊比斜邊

正切等于對邊比鄰邊,

余切等于鄰邊比對邊

互余角的三角函數(shù)間的關(guān)系:

sin(90°-α)=cosα, cos(90°-α)=sinα,

tan(90°-α)=cotα, cot(90°-α)=tanα.

篇三:銳角三角函數(shù)

銳角三角函數(shù)的定義

銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的銳角三角函數(shù)。

正弦等于對邊比斜邊

余弦等于鄰邊比斜邊

正切等于對邊比鄰邊

余切等于鄰邊比對邊

正割等于斜邊比鄰邊

余割等于斜邊比對邊

正切與余切互為倒數(shù)

它的本質(zhì)是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標系中定義的,其定義域為整個實數(shù)域。另一種定義是在直角三角形中,但并不完全。現(xiàn)代數(shù)學把它們描述成無窮數(shù)列的極限和微分方程的解,將其定義擴展到復數(shù)系。

由于三角函數(shù)的周期性,它并不具有單值函數(shù)意義上的反函數(shù)。

它有六種基本函數(shù)(初等基本表示):

函數(shù)名 正弦 余弦 正切 余切 正割 余割

在平面直角坐標系xOy中,從點O引出一條射線OP,設(shè)旋轉(zhuǎn)角為θ,設(shè)OP=r,P點的坐標為(x,y)有

正弦函數(shù) sinθ=y/r

余弦函數(shù) cosθ=x/r

正切函數(shù) tanθ=y/x

余切函數(shù) cotθ=x/y

正割函數(shù) secθ=r/x

余割函數(shù) cscθ=r/y

(斜邊為r,對邊為y,鄰邊為x。)

以及兩個不常用,已趨于被淘汰的函數(shù):

正矢函數(shù) versinθ =1-cosθ

余矢函數(shù) coversθ =1-sinθ

數(shù)學學習方法

養(yǎng)成良好的學習數(shù)學習慣

多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數(shù)學習慣包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學習幾個方面。

及時了解、掌握常用的數(shù)學思想和方法

中學數(shù)學學習要重點掌握的的數(shù)學思想有以上幾個:集合與對應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運動思想,轉(zhuǎn)化思想,變換思想。

有了數(shù)學思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

逐步形成 “以我為主”的學習模式

數(shù)學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數(shù)學一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行。記數(shù)學筆記,特別是對概念理解的不同側(cè)面和數(shù)學規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。

要建立數(shù)學糾錯本。把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再 犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。

數(shù)學學習技巧

學會看題

高中比初中有更多的相關(guān)材料。高考是全社會關(guān)注的問題。因此,在高中的實踐尤其多,一些學生購買更多的材料。因此,如何利用主題來掌握我們學習的知識,擴大我們所學的知識是學習的關(guān)鍵。我認為我們應(yīng)該看更多的話題,更多的思考,看看解決材料中問題的方法,思考方法中的原因,這樣我們就可以從更多的方法中學習。

有很多方法來消化它們。因此,我們將不得不選擇去做這個問題,用一半的努力達到兩倍的結(jié)果。我建議每天練習一次,每周做一組完整的試題,看2到3組試題,從中找出這段時間數(shù)學學習的關(guān)鍵知識,這些是我們常用來解決問題的方法,以及可以用來優(yōu)化解題的方法。

課后鞏固

很多學生在課后的學習過程中不注重鞏固,只是覺得課堂上的一些知識就足夠了,其實這是錯誤的。高中數(shù)學知識豐富,不像初中數(shù)學那么簡單,卻有著豐富的內(nèi)涵。如果它不能進一步挖掘,那么它只是掌握這些知識的表面。因此,我不知道如何理解,也不能使用這些知識時,我做我的練習。

做練習是必要的,但有些學生只是做練習,而不是鞏固這些知識,把知識擴展到做練習,經(jīng)常是在練習完成后完成練習。這和中學問題沒有什么區(qū)別。事實上,我們也應(yīng)該把在這個練習中使用的知識聯(lián)系起來,這樣我們才能理解正在使用的知識,并且能夠掌握更多的知識。也可以發(fā)現(xiàn)知識點是關(guān)鍵,也可以發(fā)現(xiàn)如何鏈接相關(guān)知識的難題。


數(shù)學三角函數(shù)知識點相關(guān)文章:

高中數(shù)學三角函數(shù)知識點總結(jié)

2021中考數(shù)學三角函數(shù)知識點復習資料大全

高中數(shù)學三角函數(shù)知識點總結(jié)

高中數(shù)學重點公式

高中數(shù)學基本知識點大全總結(jié)

數(shù)學高考精選知識點歸納

高二數(shù)學必背公式歸納

2021年中考數(shù)學考前重點復習資料歸納

中考數(shù)學知識點最全匯總

2021高考數(shù)學三角函數(shù)知識點

將本文的Word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔文檔為doc格式
876064