文小秘 > 學(xué)習(xí)資料 > 學(xué)科資料 > 數(shù)學(xué) > 人教版數(shù)學(xué)必修四三角函數(shù)知識(shí)點(diǎn)

人教版數(shù)學(xué)必修四三角函數(shù)知識(shí)點(diǎn)

崇灝3633 分享 時(shí)間:

三角函數(shù)是基本初等函數(shù)之一,是以角度(數(shù)學(xué)上最常用弧度制,下同)為自變量,角度對(duì)應(yīng)任意角終邊與單位圓交點(diǎn)坐標(biāo)或其比值為因變量的函數(shù)。下面是小編整理的人教版數(shù)學(xué)必修四三角函數(shù)知識(shí)點(diǎn),僅供參考希望能夠幫助到大家。

人教版數(shù)學(xué)必修四三角函數(shù)知識(shí)點(diǎn)

三角函數(shù)常用公式

正弦函數(shù) sinθ=y/r

余弦函數(shù) cosθ=x/r

正切函數(shù) tanθ=y/x

余切函數(shù) cotθ=x/y

正割函數(shù) secθ=r/x

余割函數(shù) cscθ=r/y

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

兩角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

和差化積

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

口訣:正加正,正在前,余加余,余并肩,正減正,余在前,余減余,負(fù)正弦.

積化和差

sinαsinβ = [cos(α-β)-cos(α+β)] /2

cosαcosβ = [cos(α+β)+cos(α-β)]/2

sinαcosβ = [sin(α+β)+sin(α-β)]/2

cosαsinβ = [sin(α+β)-sin(α-β)]/2

同角三角函數(shù)關(guān)系

倒數(shù)關(guān)系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1

商的關(guān)系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα

平方關(guān)系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)

誘導(dǎo)公式

sin(-α) = -sinα

cos(-α) = cosα

tan (—a)=-tanα

sin(π/2-α) = cosα

cos(π/2-α) = sinα

sin(π/2+α) = cosα

cos(π/2+α) = -sinα

sin(π-α) = sinα

cos(π-α) = -cosα

sin(π+α) = -sinα

cos(π+α) = -cosα

tanA= sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A) )

半角公式

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

輔助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

數(shù)學(xué)學(xué)習(xí)方法總結(jié)

課前認(rèn)真預(yù)習(xí).預(yù)習(xí)的目的是為了能更好得聽(tīng)老師講課,通過(guò)預(yù)習(xí),掌握度要達(dá)到百分之八十.帶著預(yù)習(xí)中不明白的問(wèn)題去聽(tīng)老師講課,來(lái)解答這類的問(wèn)題.預(yù)習(xí)還可以使聽(tīng)課的整體效率提高.具體的預(yù)習(xí)方法:將書上的題目做完,畫出知識(shí)點(diǎn),整個(gè)過(guò)程大約持續(xù)15-20分鐘.在時(shí)間允許的情況下,還可以將練習(xí)冊(cè)做完.

讓數(shù)學(xué)課學(xué)與練結(jié)合.在數(shù)學(xué)課上,光聽(tīng)是沒(méi)用的.當(dāng)老師讓同學(xué)去黑板上演算時(shí),自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來(lái),不能不求甚解.否則考試遇到類似的題目就可能不會(huì)做.聽(tīng)老師講課時(shí)一定要全神貫注,要注意細(xì)節(jié)問(wèn)題,否則“千里之堤,毀于蟻穴”.

課后及時(shí)復(fù)習(xí).寫完作業(yè)后對(duì)當(dāng)天老師講的內(nèi)容進(jìn)行梳理,可以適當(dāng)?shù)刈?5分鐘左右的課外題.可以根據(jù)自己的需要選擇適合自己的課外書.其課外題內(nèi)容大概就是今天上的課.

數(shù)學(xué)直線、平面、簡(jiǎn)單多面體知識(shí)點(diǎn)

1.計(jì)算異面直線所成角的關(guān)鍵是平移(補(bǔ)形)轉(zhuǎn)化為兩直線的夾角計(jì)算

2.計(jì)算直線與平面所成的角關(guān)鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運(yùn)用等積法求點(diǎn)到直線的距離,后虛擬直角三角形求解.注:一斜線與平面上以斜足為頂點(diǎn)的角的兩邊所成角相等 斜線在平面上射影為角的平分線.

3.空間平行垂直關(guān)系的證明,主要依據(jù)相關(guān)定義、公理、定理和空間向量進(jìn)行,請(qǐng)重視線面平行關(guān)系、線面垂直關(guān)系(三垂線定理及其逆定理)的橋梁作用.注意:書寫證明過(guò)程需規(guī)范.

4.直棱柱、正棱柱、平行六面體、長(zhǎng)方體、正方體、正四面體、棱錐、正棱錐關(guān)于側(cè)棱、側(cè)面、對(duì)角面、平行于底的截面的幾何體性質(zhì).

如長(zhǎng)方體中:對(duì)角線長(zhǎng),棱長(zhǎng)總和為,全(表)面積為,(結(jié)合可得關(guān)于他們的等量關(guān)系,結(jié)合基本不等式還可建立關(guān)于他們的不等關(guān)系式),

如三棱錐中:側(cè)棱長(zhǎng)相等(側(cè)棱與底面所成角相等)頂點(diǎn)在底上射影為底面外心,側(cè)棱兩兩垂直(兩對(duì)對(duì)棱垂直)頂點(diǎn)在底上射影為底面垂心,斜高長(zhǎng)相等(側(cè)面與底面所成相等)且頂點(diǎn)在底上在底面內(nèi)頂點(diǎn)在底上射影為底面內(nèi)心.

5.求幾何體體積的常規(guī)方法是:公式法、割補(bǔ)法、等積(轉(zhuǎn)換)法、比例(性質(zhì)轉(zhuǎn)換)法等.注意:補(bǔ)形:三棱錐 三棱柱 平行六面體

6.多面體是由若干個(gè)多邊形圍成的幾何體.棱柱和棱錐是特殊的多面體.

正多面體的每個(gè)面都是相同邊數(shù)的正多邊形,以每個(gè)頂點(diǎn)為其一端都有相同數(shù)目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體.

7.球體積公式。球表面積公式,是兩個(gè)關(guān)于球的幾何度量公式.它們都是球半徑及的函數(shù).

人教版數(shù)學(xué)必修四三角函數(shù)知識(shí)點(diǎn)相關(guān)文章:

高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)

2021中考數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)復(fù)習(xí)資料大全

人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)歸納最新五篇

高考數(shù)學(xué)必考知識(shí)歸納整理大全

高二數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)梳理歸納5篇

高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)五篇

人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)精選歸納5篇

人教版高一數(shù)學(xué)必修一必考知識(shí)點(diǎn)總結(jié)分享五篇

高一數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)歸納

八年級(jí)上冊(cè)人教版數(shù)學(xué)第二章知識(shí)點(diǎn)歸納總結(jié)

944580