高三高考數(shù)學(xué)重點復(fù)習(xí)知識點總結(jié)模板
哪些才是我們真正需要的數(shù)學(xué)復(fù)習(xí)知識點呢?在我們平凡的學(xué)生生涯里,說起知識點,應(yīng)該沒有人不熟悉吧?知識點就是學(xué)習(xí)的重點。下面是小編給大家整理的高三高考數(shù)學(xué)重點復(fù)習(xí)知識點總結(jié)模板,僅供參考希望能幫助到大家。
更多的【高考數(shù)學(xué)知識點】請點擊下 方↓↓↓
★最新高考數(shù)學(xué)知識點歸納總結(jié)★
★高三高考數(shù)學(xué)復(fù)習(xí)總策略★
★高考數(shù)學(xué)學(xué)習(xí)方法及復(fù)習(xí)策略★
★高考數(shù)學(xué)一輪復(fù)習(xí)策略分享★
高三高考數(shù)學(xué)重點復(fù)習(xí)知識點總結(jié)模板篇1
考點一:集合與簡易邏輯
集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關(guān)系的理解和認(rèn)識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛唷⑷Q命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達(dá)數(shù)學(xué)解題過程和邏輯推理。
考點二:函數(shù)與導(dǎo)數(shù)
函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。
考點三:三角函數(shù)與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點”題型.
考點四:數(shù)列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會在小題中設(shè)置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.
考點五:立體幾何與空間向量
一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。
高三高考數(shù)學(xué)重點復(fù)習(xí)知識點總結(jié)模板篇2
1.數(shù)列的定義、分類與通項公式
(1)數(shù)列的定義:
①數(shù)列:按照一定順序排列的一列數(shù).
②數(shù)列的項:數(shù)列中的每一個數(shù).
(2)數(shù)列的分類:
分類標(biāo)準(zhǔn)類型滿足條件
項數(shù)有窮數(shù)列項數(shù)有限
無窮數(shù)列項數(shù)無限
項與項間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N.
遞減數(shù)列an+1<an< p="">
常數(shù)列an+1=an
(3)數(shù)列的通項公式:
如果數(shù)列{an}的第n項與序號n之間的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式.
2.數(shù)列的遞推公式
如果已知數(shù)列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關(guān)系可用一個公式來表示,那么這個公式叫數(shù)列的遞推公式.
3.對數(shù)列概念的理解
(1)數(shù)列是按一定“順序”排列的一列數(shù),一個數(shù)列不僅與構(gòu)成它的“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無序性.因此,若組成兩個數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個數(shù)列.
(2)數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集合中的元素不能重復(fù)出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別.
高三高考數(shù)學(xué)重點復(fù)習(xí)知識點總結(jié)模板篇3
1、直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
2、直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過兩點的直線的斜率公式:
注意下面四點:
(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關(guān);
(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。
3、直線方程
點斜式:
直線斜率k,且過點
注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1。
高三高考數(shù)學(xué)重點復(fù)習(xí)知識點總結(jié)模板篇4
1、三類角的求法:
①找出或作出有關(guān)的角。
②證明其符合定義,并指出所求作的角。
③計算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面為正多邊形的直棱柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。
正棱錐的計算集中在四個直角三角形中:
3、怎樣判斷直線l與圓C的位置關(guān)系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的“垂徑定理”。
4、對線性規(guī)劃問題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。
不看后悔!清華名師揭秘學(xué)好高中數(shù)學(xué)的方法
培養(yǎng)興趣是關(guān)鍵。學(xué)生對數(shù)學(xué)產(chǎn)生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?
(1)欣賞數(shù)學(xué)的美感
比如幾何圖形中的對稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……
通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小于兩個定點之間的距離)的點的集合。
(2)注意到數(shù)學(xué)在實際生活中的應(yīng)用。
例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識就可以理解.
學(xué)好數(shù)學(xué),是現(xiàn)代公民的`基本素養(yǎng)之一啊.
(3)采用靈活的教學(xué)手段,與時俱進(jìn)。
利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學(xué)生也更容易接受,理解更深。
(4)適當(dāng)看一些科普類的書籍和文章。
比如:學(xué)圓錐曲線的時候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)用,這方面的文章也不少。
高三高考數(shù)學(xué)重點復(fù)習(xí)知識點總結(jié)模板篇5
1.數(shù)列的定義
按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.
(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….
(4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當(dāng)于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n.
(5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.
2.數(shù)列的分類
(1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.
(2)按照項與項之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.
3.數(shù)列的通項公式
數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,
這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非.如:數(shù)列1,2,3,4。
高三高考數(shù)學(xué)重點復(fù)習(xí)知識點總結(jié)模板篇6
一、排列組合篇
1. 掌握分類計數(shù)原理與分步計數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題。
2. 理解排列的意義,掌握排列數(shù)計算公式,并能用它解決一些簡單的應(yīng)用問題。
3. 理解組合的意義,掌握組合數(shù)計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題。
4. 掌握二項式定理和二項展開式的性質(zhì),并能用它們計算和證明一些簡單的問題。
5. 了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
6. 了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。
7. 了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。
8. 會計算事件在n次獨立重復(fù)試驗中恰好發(fā)生k次的概率.
二、立體幾何篇
高考立體幾何試題一般共有4道(選擇、填空題3道, 解答題1道), 共計總分27分左右,考查的知識點在20個以內(nèi)。 選擇填空題考核立幾中的計算型問題, 而解答題著重考查立幾中的邏輯推理型問題, 當(dāng)然, 二者均應(yīng)以正確的空間想象為前提。 隨著新的課程改革的進(jìn)一步實施,立體幾何考題正朝著“多一點思考,少一點計算”的發(fā)展。從歷年的考題變化看, 以簡單幾何體為載體的線面位置關(guān)系的論證,角與距離的探求是??汲P碌臒衢T話題。
知識整合
1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2. 判定兩個平面平行的方法:
(1)根據(jù)定義--證明兩平面沒有公共點;
(2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;
(3)證明兩平面同垂直于一條直線。
3.兩個平面平行的主要性質(zhì):
(1)由定義知:“兩平行平面沒有公共點”。
(2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面。
(3)兩個平面平行的性質(zhì)定理:”如果兩個平行平面同時和第三個平面相交,那
么它們的交線平行“。
(4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面。
(5)夾在兩個平行平面間的平行線段相等。
(6)經(jīng)過平面外一點只有一個平面和已知平面平行。
以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為”性質(zhì)定理“,但在解題過程中均可直接作為性質(zhì)定理引用。
解答題分步驟解答可多得分
1. 合理安排,保持清醒。數(shù)學(xué)考試在下午,建議中午休息半小時左右,睡不著閉閉眼睛也好,盡量放松。然后帶齊用具,提前半小時到考場。
2. 通覽全卷,摸透題情。剛拿到試卷,一般較緊張,不宜匆忙作答,應(yīng)從頭到尾通覽全卷,盡量從卷面上獲取更多的信息,摸透題情。這樣能提醒自己先易后難,也可防止漏做題。
3 .解答題規(guī)范有序。一般來說,試題中容易題和中檔題占全卷的80%以上,是考生得分的主要來源。對于解答題中的容易題和中檔題,要注意解題的規(guī)范化,關(guān)鍵步驟不能丟,如三種語言(文字語言、符號語言、圖形語言)的表達(dá)要規(guī)范,邏輯推理要嚴(yán)謹(jǐn),計算過程要完整,注意算理算法,應(yīng)用題建模與還原過程要清晰,合理安排卷面結(jié)構(gòu)……對于解答題中的難題,得滿分很困難,可以采用“分段得分”的策略,因為高考(微博)閱卷是“分段評分”。比如可將難題劃分為一個個子問題或一系列的步驟,先解決問題的一部分,能解決到什么程度就解決到什么程度,獲取一定的分?jǐn)?shù)。有些題目有好幾問,前面的小問你解答不出,但后面的小問如果根據(jù)前面的結(jié)論你能夠解答出來,這時候不妨引用前面的結(jié)論先解答后面的,這樣跳步解答也可以得分。
三、數(shù)列問題篇
數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。高考對本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會遺漏。有關(guān)數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識和指數(shù)函數(shù)、對數(shù)函數(shù)和不等式的知識綜合起來,試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學(xué)歸納法綜合在一起。探索性問題是高考的熱點,常在數(shù)列解答題中出現(xiàn)。本章中還蘊含著豐富的數(shù)學(xué)思想,在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學(xué)方法。
近幾年來,高考關(guān)于數(shù)列方面的命題主要有以下三個方面;
(1)數(shù)列本身的有關(guān)知識,其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項公式及求和公式。
(2)數(shù)列與其它知識的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。
(3)數(shù)列的應(yīng)用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎(chǔ)題為主,解答題大都以基礎(chǔ)題和中檔題為主,只有個別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。
知識整合
1. 在掌握等差數(shù)列、等比數(shù)列的定義、性質(zhì)、通項公式、前n項和公式的基礎(chǔ)上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學(xué)思想方法在解題實踐中的指導(dǎo)作用,靈活地運用數(shù)列知識和方法解決數(shù)學(xué)和實際生活中的有關(guān)問題;
2. 在解決綜合題和探索性問題實踐中加深對基礎(chǔ)知識、基本技能和基本數(shù)學(xué)思想方法的認(rèn)識,溝通各類知識的聯(lián)系,形成更完整的知識網(wǎng)絡(luò),提高分析問題和解決問題的能力,進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運用數(shù)學(xué)思想方法分析問題與解決問題的能力。
3. 培養(yǎng)學(xué)生善于分析題意,富于聯(lián)想,以適應(yīng)新的背景,新的設(shè)問方式,提高學(xué)生用函數(shù)的思想、方程的思想研究數(shù)列問題的自覺性、培養(yǎng)學(xué)生主動探索的精神和科學(xué)理性的思維方法.
四、導(dǎo)數(shù)應(yīng)用篇
專題綜述
導(dǎo)數(shù)是微積分的初步知識,是研究函數(shù),解決實際問題的有力工具。在高中階段對于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個方面:
1. 導(dǎo)數(shù)的常規(guī)問題:
(1)刻畫函數(shù)(比初等方法精確細(xì)微);
(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);
(3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡便)等關(guān)于 次多項式的導(dǎo)數(shù)問題屬于較難類型。
2. 關(guān)于函數(shù)特征,最值問題較多,所以有必要專項討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡便。
3. 導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考(微博)中考察綜合能力的一個方向,應(yīng)引起注意。
知識整合
1. 導(dǎo)數(shù)概念的理解。
2. 利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實際問題的最大值與最小值。復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點與難點內(nèi)容。課本中先通過實例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來對法則進(jìn)行了證明。
3. 要能正確求導(dǎo),必須做到以下兩點:
(1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。
(2)對于一個復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對哪個變量求導(dǎo)。
五、解析幾何(圓錐曲線)
高考解析幾何剖析:
1、很多高考問題都是以平面上的點、直線、曲線(如圓、橢圓、拋物線、雙曲線)這三大類幾何元素為基礎(chǔ)構(gòu)成的圖形的問題;
2、演繹規(guī)則就是代數(shù)的演繹規(guī)則,或者說就是列方程、解方程的規(guī)則。
有了以上兩點認(rèn)識,我們可以毫不猶豫地下這么一個結(jié)論,那就是解決高考解析幾何問題無外乎做兩項工作:
1、幾何問題代數(shù)化。
2、用代數(shù)規(guī)則對代數(shù)化后的問題進(jìn)行處理。
高三高考數(shù)學(xué)重點復(fù)習(xí)知識點總結(jié)模板篇7
一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)
主要是考函數(shù)和導(dǎo)數(shù),因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析。
二、平面向量和三角函數(shù)
對于這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。
三、數(shù)列
數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。
四、空間向量和立體幾何
在里面重點考察兩個方面:一個是證明;一個是計算。
五、概率和統(tǒng)計
概率和統(tǒng)計主要屬于數(shù)學(xué)應(yīng)用問題的范疇,需要掌握幾個方面:……等可能的概率;……事件;獨立事件和獨立重復(fù)事件發(fā)生的概率。
六、解析幾何
這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準(zhǔn)確度。
七、壓軸題
同學(xué)們在最后的備考復(fù)習(xí)中,還應(yīng)該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。
高考數(shù)學(xué)直線方程知識點:什么是直線方程
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當(dāng)這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度??梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標(biāo)軸的交點在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
高三高考數(shù)學(xué)重點復(fù)習(xí)知識點總結(jié)模板篇8
一、求動點的軌跡方程的基本步驟
⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);
⒉寫出點M的集合;
⒊列出方程=0;
⒋化簡方程為最簡形式;
⒌檢驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
⒊相關(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。
⒋參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
⒌交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
直譯法:求動點軌跡方程的一般步驟
①建系建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點設(shè)軌跡上的任一點P(x,y);
③列式列出動點p所滿足的關(guān)系式;
④代換依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證明證明所求方程即為符合條件的動點軌跡方程。