初一數(shù)學上冊重點難點知識匯總
初一數(shù)學上冊重點難點知識最新匯總
同學們學數(shù)學要記錄老師給的例題,老師是很有經(jīng)驗的,他們給的例題都是有一定的代表性的,把例題研究透對于數(shù)學成績的提高是有很大的助益的。下面是小編為大家整理的有關初一數(shù)學上冊重點難點知識匯總,希望對你們有幫助!
初一數(shù)學上冊重點難點知識匯總
第一章
1.1 正數(shù)與負數(shù)
在以前學過的0以外的數(shù)前面加上負號“—”的數(shù)叫負數(shù)(negative number)。
與負數(shù)具有相反意義,即以前學過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。
1.2 有理數(shù)
正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù)(integer),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)(fraction)。
整數(shù)和分數(shù)統(tǒng)稱有理數(shù)(rational number)。
通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸(number axis)。
數(shù)軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。
只有符號不同的兩個數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)
數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作|a|。
一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的反而小。
1.3 有理數(shù)的加減法
有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。
3.一個數(shù)同0相加,仍得這個數(shù)。
有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。
1.4 有理數(shù)的乘除法
有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。
乘積是1的兩個數(shù)互為倒數(shù)。
有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。 mì
求n個相同因數(shù)的積的運算,叫乘方,乘方的結(jié)果叫冪(power)。在a的n次方中,a叫做底數(shù)(base number),n叫做指數(shù)(exponent)。
負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。
把一個大于10的數(shù)表示成a×10的n次方的形式,使用的就是科學計數(shù)法。
從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的`有效數(shù)字(significant digit)。
第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數(shù)的等式。
方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解(solution)。
等式的性質(zhì):
1.等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。
2.等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。
2.2 從古老的代數(shù)書說起——一元一次方程的討論(1)
把等式一邊的某項變號后移到另一邊,叫做移項。
第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比較與運算
如果兩個角的和等于90度(直角),就說這兩個叫互為余角(compiementary angle),即其中每一個角是另一個角的余角。
如果兩個角的和等于180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的余角相等。
初一數(shù)學上冊有理數(shù)知識點匯總
一、目標與要求
1.了解正數(shù)與負數(shù)是從實際需要中產(chǎn)生的。
2.能正確判斷一個數(shù)是正數(shù)還是負數(shù),明確0既不是正數(shù)也不是負數(shù)。
3.理解有理數(shù)除法的意義,熟練掌握有理數(shù)除法法則,會進行有理數(shù)的除法運算;
4.了解倒數(shù)概念,會求給定有理數(shù)的倒數(shù);
5.通過將除法運算轉(zhuǎn)化為乘法運算,培養(yǎng)學生的轉(zhuǎn)化的思想;通過有理數(shù)的除法
二、重點
正、負數(shù)的概念:
正確理解數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù);
有理數(shù)的加法法則;
除法法則和除法運算。
三、難點
負數(shù)的概念、正確區(qū)分兩種不同意義的量;
數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù);
異號兩數(shù)相加的法則;
根據(jù)除法是乘法的逆運算,歸納出除法法則及商的符號的確定。
四、知識框架
初一數(shù)學上冊知識點:有理數(shù)
五、知識點、概念總結(jié)
1.正數(shù):比0大的數(shù)叫正數(shù)。
2.負數(shù):比0小的數(shù)叫負數(shù)。
3.有理數(shù):
(1)凡能寫成q/p(p,q為整數(shù)且p不等于0)形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。
注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:
初一數(shù)學上冊知識點:有理數(shù)
4.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。
5.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)相反數(shù)的和為0等價于a+b=0等價于a、b互為相反數(shù)。
6.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);
注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的.距離;
(2)絕對值可表示為:
初一數(shù)學上冊知識點:有理數(shù)
絕對值的問題經(jīng)常分類討論;
7.有理數(shù)比大小:
(1)正數(shù)的絕對值越大,這個數(shù)越大;
(2)正數(shù)永遠比0大,負數(shù)永遠比0小;
(3)正數(shù)大于一切負數(shù);
(4)兩個負數(shù)比大小,絕對值大的反而小;
(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
8.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);
注意:0沒有倒數(shù);若a≠0,那么a的倒數(shù)是1/a;若ab=1等價于a、b互為倒數(shù);若ab=-1等價于a、b互為負倒數(shù)。
9. 有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù)。
10.有理數(shù)加法的運算律:
(1)加法的交換律:a+b=b+a ;
(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。
11.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b)。
12.有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定。
13. 有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;
(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
14.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即a/0無意義。
15.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
(2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n ,當n為正偶數(shù)時:(-a)n =an 或(a-b)n=(b-a)n 。
16.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
17.科學記數(shù)法:
把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法。
18.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。
19.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。
20.混合運算法則:先乘方,后乘除,最后加減。