人教版初二數(shù)學下冊知識點

燁榮0 分享 時間:

在平平淡淡的學習中,大家都沒少背知識點吧?知識點就是“讓別人看完能理解”或者“通過練習我能掌握”的內容。掌握知識點有助于大家更好的學習。以下是小編整理的人教版初二數(shù)學下冊知識點,歡迎閱讀與收藏。

人教版初二數(shù)學下冊知識點

人教版初二數(shù)學下冊知識點

一、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式。

能使不等式成立的未知數(shù)的值,叫做不等式的解.不等式的解不唯一,把所有滿足不等式的解集合在一起,構成不等式的解集.求不等式解集的過程叫解不等式.

由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組

不等式組的解集:一元一次不等式組各個不等式的解集的公共部分。

等式基本性質1:在等式的兩邊都加上(或減去)同一個數(shù)或整式,所得的結果仍是等式.基本性質2:在等式的兩邊都乘以或除以同一個數(shù)(除數(shù)不為0),所得的結果仍是等式.

二、不等式的基本性質

1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變.(注:移項要變號,但不等號不變。)

性質2:不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變.

性質3:不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變.不等式的基本性質<1>、若a>b,則a+c>b+c;<2>、若a>b,c>0則ac>bc若c<0,則ac<bc< p="">

不等式的其他性質:反射性:若a>b,則bb,且b>c,則a>c

三、解不等式的步驟:

1、去分母;

2、去括號;

3、移項合并同類項;

4、系數(shù)化為1。

四、解不等式組的步驟:

1、解出不等式的解集

2、在同一數(shù)軸表示不等式的解集。

五、列一元一次不等式組解實際問題的一般步驟:

(1)審題;

(2)設未知數(shù),找(不等量)關系式;

(3)設元,(根據(jù)不等量)關系式列不等式(組)(4)解不等式組;檢驗并作答。

六、??碱}型:

1、求4x-67x-12的非負數(shù)解.

2、已知3(x-a)=x-a+1r的解適合2(x-5)8a,求a的范圍.

3、當m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間。

人教版初二數(shù)學下冊知識點梳理

1、正方形的概念

有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。

2、正方形的性質

(1)具有平行四邊形、矩形、菱形的一切性質;

(2)正方形的四個角都是直角,四條邊都相等;

(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;

(4)正方形是軸對稱圖形,有4條對稱軸;

(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;

(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。

3、正方形的判定

(1)判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:

先證它是矩形,再證有一組鄰邊相等。

先證它是菱形,再證有一個角是直角。

(2)判定一個四邊形為正方形的一般順序如下:

先證明它是平行四邊形;

再證明它是菱形(或矩形);

最后證明它是矩形(或菱形)。

八年級數(shù)學下冊知識點

第十六章 分式

一.知識框架

二.知識概念

1.分式:形如A/B,A、B是整式,B中含有未知數(shù)且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。

2.分式有意義的條件:分母不等于0

3.約分:把一個分式的分子和分母的公因式(不為1的數(shù))約去,這種變形稱為約分。

4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。

分式的基本性質:分式的分子和分母同時乘以(或除以)同一個不為0的整式,分式的值不變。用式子表示為:A/B=A_C/B_C A/B=A÷C/B÷C (A,B,C為整式,且C≠0)

5.最簡分式:一個分式的分子和分母沒有公因式時,這個分式稱為最簡分式.約分時,一般將一個分式化為最簡分式.

6.分式的四則運算:1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/c±b/c=a±b/c

2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進行計算.用字母表示為:a/b±c/d=ad±cb/bd

3.分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b _ c/d=ac/bd

4.分式的除法法則:(1).兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.a/b÷c/d=ad/bc

(2).除以一個分式,等于乘以這個分式的倒數(shù):a/b÷c/d=a/b_d/c

7.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.

8.分式方程的解法:①去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;③驗根(求出未知數(shù)的值后必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數(shù)的取值范圍,可能產生增根).

分式和分數(shù)有著許多相似點。教師在講授本章內容時,可以對比分數(shù)的特點及性質,讓學生自主學習。重點在于分式方程解實際應用問題。

第十七章 反比例函數(shù)

一.知識框架

二.知識概念

1.反比例函數(shù):形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù)。其他形式xy=k

2.圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點

3.性質:當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減小;

當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大。

4.|k|的幾何意義:表示反比例函數(shù)圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積。

在學習反比例函數(shù)時,教師可讓學生對比之前所學習的一次函數(shù)啟發(fā)學生進行對比性學習。在做題時,培養(yǎng)和養(yǎng)成數(shù)形結合的思想。

第十八章 勾股定理

一.知識框架

二 知識概念

1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。

勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個三角形是直角三角形。

2.定理:經過證明被確認正確的命題叫做定理。

3.我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)

勾股定理是直角三角形具備的重要性質。本章要求學生在理解勾股定理的前提下,學會利用這個定理解決實際問題??梢酝ㄟ^自主學習的發(fā)展體驗獲取數(shù)學知識的感受

第十九章 四邊形

一.知識框架

二.知識概念

1.平行四邊形定義: 有兩組對邊分別平行的四邊形叫做平行四邊形。

2.平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。

3.平行四邊形的判定 1.兩組對邊分別相等的四邊形是平行四邊形

2.對角線互相平分的四邊形是平行四邊形;

3.兩組對角分別相等的四邊形是平行四邊形;

4.一組對邊平行且相等的四邊形是平行四邊形。

4.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。

5.直角三角形斜邊上的中線等于斜邊的一半。

6.矩形的定義:有一個角是直角的平行四邊形。

7.矩形的性質: 矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD

8.矩形判定定理: 1.有一個角是直角的平行四邊形叫做矩形。

2.對角線相等的平行四邊形是矩形。

3.有三個角是直角的四邊形是矩形。

9.菱形的定義 :鄰邊相等的平行四邊形。

10.菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

11.菱形的判定定理:1.一組鄰邊相等的平行四邊形是菱形。

2.對角線互相垂直的平行四邊形是菱形。

3.四條邊相等的四邊形是菱形。

12.S菱形=1/2×ab(a、b為兩條對角線)

13.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。

14.正方形的性質:四條邊都相等,四個角都是直角。 正方形既是矩形,又是菱形。

15.正方形判定定理: 1.鄰邊相等的矩形是正方形。 2.有一個角是直角的菱形是正方形。

16.梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。

17.直角梯形的定義:有一個角是直角的梯形

18.等腰梯形的定義:兩腰相等的梯形。

19.等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。

20.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。

本章內容是對平面上四邊形的分類及性質上的研究,要求學生在學習過程中多動手多動腦,把自己的發(fā)現(xiàn)和知識帶入做題中。因此教師在教學時可以多鼓勵學生自己總結四邊形的特點,這樣有利于學生對知識的把握。

第二十章 數(shù)據(jù)的分析

一.知識框架

二.知識概念

1.加權平均數(shù):加權平均數(shù)的計算公式。 權的理解:反映了某個數(shù)據(jù)在整個數(shù)據(jù)中的重要程度。

2.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。

3. 眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。

4. 極差:組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。

5.方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。

本章內容要求學生在經歷數(shù)據(jù)的收集、整理、分析過程中發(fā)展學生的統(tǒng)計意識和數(shù)據(jù)處理的方法與能力。在教學過程中,以生活實例為主,讓學生體會到數(shù)據(jù)在生活中的重要性。

數(shù)學基礎知識點

平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術平方根。②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內,相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。

初二下冊數(shù)學知識點

第五章 分式與分式方程

1、認識分式

① 一般地,用AB表示兩個整式。A÷B可以表示成的形式,如果B中含有字母,那么稱為分式,其中A稱為分式的分子,B稱為分式的分母。對于任意一個分式,分母都不能為零

② 分式的基本性質:分式的分子與分母都乘以或除以同一個不為零的整式,分式的值不變

③ 把一個分式的分子,分母的公因式約去,這種變形稱為分式的約分

④ 在一個分式中,分子分母已經沒有公因式,這樣的分式稱為最簡分式,化簡分式時,通常要使結果稱為最簡分式或者整式。

2、分式的乘除法

① 兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個分式相除,把除式的分子和分母顛倒位置后再與被除數(shù)相乘

3、分式的加減法

① 同分母的分式相加減,分母不變,把分子相加減

② 根據(jù)分式的基本性質,異分母的分式可以化為同分母的分式。這一過程稱為分式的通分。

③ 為了計算方便,異分母分式通分時,通常采取最簡單的公分母,簡稱最簡公分母,作為它們的共同分母

④ 異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進行計算

4、分式方程

① 分母中含有未知數(shù)的方程叫做分式方程

② 增跟:一個數(shù)使原分式方程的分母為零,原因是,我們在方程的兩邊同乘以一個使分母為零的整式


1482969