初二數(shù)學一次函數(shù)知識點

嘉欣0 分享 時間:

學習這件事,順序絕對不能亂,不能什么都抓,結(jié)果什么都抓不到。我們要參加考試,應(yīng)該去抓住考點和重點去學習,然后集中去突破,那考試自然能考個好成績。以下是小編為大家?guī)淼某醵?shù)學一次函數(shù)知識點梳理,歡迎參閱呀!

初二數(shù)學一次函數(shù)知識點

初二數(shù)學一次函數(shù)知識點梳理

分解因式

一、公式:

1、ma+mb+mc=m(a+b+c);

2、a2-b2=(a+b)(a-b);

3、a22ab+b2=(ab)2。

二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。

1、把幾個整式的積化成一個多項式的形式,是乘法運算。

2、把一個多項式化成幾個整式的積的形式,是因式分解。

3、ma+mb+mcm(a+b+c)4、因式分解與整式乘法是相反方向的變形。

三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式.找公因式的一般步驟:(1)若各項系數(shù)是整系數(shù),取系數(shù)的公約數(shù);(2)取相同的字母,字母的指數(shù)取較低的;(3)取相同的多項式,多項式的指數(shù)取較低的.(4)所有這些因式的乘積即為公因式。

四、分解因式的一般步驟為:(1)若有-先提取-,若多項式各項有公因式,則再提取公因式。(2)若多項式各項沒有公因式,則根據(jù)多項式特點,選用平方差公式或完全平方公式。(3)每一個多項式都要分解到不能再分解為止。

五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式。

分解因式的方法:1、提公因式法。2、運用公式法。

分式的四則運算

乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。

除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

乘方法則:分式乘方要把分子、分母各自乘方。用式子表示是:(其中n是正整數(shù))

加減法則:同分母的分式相加減,分母不變,把分子相加減;異分母的分式相加減,先通分,轉(zhuǎn)化為同分母分式,然后再加減。

注意

(1)異分母分式相加減,“先通分”是關(guān)鍵,最簡公分母確定后再通分,計算時要注意分式中符號的處理,特別是分子相減,要注意分子的整體性;

(2)運算時順序合理、步驟清晰;

(3)運算結(jié)果必須化成最簡分式或整式。

數(shù)學有理數(shù)比大小知識點

(1)正數(shù)永遠比0大,負數(shù)永遠比0小;

(2)正數(shù)大于一切負數(shù);

(3)兩個負數(shù)比較,絕對值大的反而小;

(4)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

(5)-1,-2,+1,+4,-0.5,以上數(shù)據(jù)表示與標準質(zhì)量的差,絕對值越小,越接近標準。

數(shù)學線段的性質(zhì)

(1)線段公理:所有連接兩點的線中,線段最短。也可簡單說成:兩點之間線段最短。

(2)連接兩點的線段的長度,叫做這兩點的距離。

(3)線段的中點到兩端點的距離相等。

(4)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。

初二下冊數(shù)學期末重點

一、軸對稱圖形

1.把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關(guān)于這條直線(成軸)對稱。

2.把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關(guān)于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應(yīng)點,叫做對稱點。

3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系。

4.軸對稱的性質(zhì)。

①關(guān)于某直線對稱的兩個圖形是全等形。

②如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線。

③軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。

④如果兩個圖形的對應(yīng)點連線被同條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。

二、線段的垂直平分線

1.經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。

2.線段垂直平分線上的點與這條線段的兩個端點的距離相等;

3.與一條線段兩個端點距離相等的點,在線段的垂直平分線上;

三、用坐標表示軸對稱小結(jié)

1.在平面直角坐標系中,關(guān)于x軸對稱的點橫坐標相等,縱坐標互為相反數(shù).關(guān)于y軸對稱的點橫坐標互為相反數(shù),縱坐標相等;

2.三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等;

四、(等腰三角形)知識點回顧

1、等腰三角形的性質(zhì)

①等腰三角形的兩個底角相等。(等邊對等角)

②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)

2、等腰三角形的判定:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)

五、(等邊三角形)知識點回顧

1.等邊三角形的性質(zhì):等邊三角形的三個角都相等,并且每一個角都等于600。

2、等邊三角形的判定:

①三個角都相等的三角形是等邊三角形。

②有一個角是600的等腰三角形是等邊三角形。

3、在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。

①等腰三角形的性質(zhì)

定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)

推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。

推論2:等邊三角形的各個角都相等,并且每個角都等于60°。

②等腰三角形的其他性質(zhì):

(1)等腰直角三角形的兩個底角相等且等于45°;

(2)等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。

(3)等腰三角形的三角關(guān)系:設(shè)頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°—2∠B,∠B=∠C=

③等腰三角形的判定

等腰三角形的判定定理及推論:

定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。這個判定定理常用于證明同一個三角形中的邊相等。

推論1:三個角都相等的三角形是等邊三角形

推論2:有一個角是60°的等腰三角形是等邊三角形。

推論3:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半。

④三角形中的中位線

連接三角形兩邊中點的線段叫做三角形的中位線。

(1)三角形共有三條中位線,并且它們又重新構(gòu)成一個新的三角形。

(2)要會區(qū)別三角形中線與中位線。

三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。

三角形中位線定理的作用:

位置關(guān)系:可以證明兩條直線平行。

數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。

常用結(jié)論:任一個三角形都有三條中位線,由此有:

結(jié)論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。

結(jié)論2:三條中位線將原三角形分割成四個全等的三角形。

結(jié)論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。

結(jié)論4:三角形一條中線和與它相交的中位線互相平分。

結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。

數(shù)學經(jīng)常遇到的問題解答

1、要提高數(shù)學成績首先要做什么?

這一點,是很多學生所關(guān)注的,要提高數(shù)學成績,首先就應(yīng)該從基礎(chǔ)知識學起。不少同學覺得基礎(chǔ)知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學成績先要把基礎(chǔ)夯實。

2、基礎(chǔ)不好怎么學好數(shù)學?

對于基礎(chǔ)差的同學來說,課本是就是學好數(shù)學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎(chǔ);第二,提高得分能力。

3、是否要采用題海戰(zhàn)術(shù)?

方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實也是一種學習方法,但很多學生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學習效果。因此在做題后要總結(jié)至關(guān)重要,只有認真總結(jié)才能不斷積累做題經(jīng)驗,這樣才能取得理想成績。

4、做題總是粗心怎么辦?

很多學生成績不好,會說自己是因為粗心導(dǎo)致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數(shù)學沒有“粗心”只有“不用心”。

為什么要學習數(shù)學

作為一門普及度極廣的學科,數(shù)學在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會對數(shù)學產(chǎn)生排斥,認為它枯燥無味,但事實上,數(shù)學是所有學科的基石之一,對我們?nèi)粘I钜约拔磥淼穆殬I(yè)發(fā)展有著重大影響。下面我將詳細闡述學習數(shù)學的重要性。

首先,數(shù)學可以幫助我們提高邏輯思維能力。數(shù)學的學科性質(zhì)使我們在學習的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學習和練習,我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復(fù)雜問題時更能得心應(yīng)手。

其次,數(shù)學在現(xiàn)代科技中起著至關(guān)重要的作用。在計算機科學、物理學、經(jīng)濟學、工程學等領(lǐng)域,數(shù)學可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測趨勢,并且可以在實際應(yīng)用中優(yōu)化和改進。例如,在人工智能領(lǐng)域,深度學習技術(shù)所涉及的數(shù)學概念包括線性代數(shù)、微積分和概率論等,如果沒有深厚的數(shù)學基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時,在工程學領(lǐng)域,許多機械、電子、化工等產(chǎn)品的設(shè)計和制造過程,也需要運用到數(shù)學知識,因此學習數(shù)學可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

除此之外,數(shù)學也是一種普遍使用的語言,許多學科和領(lǐng)域都使用數(shù)學語言進行表達和交流。例如,在自然科學領(lǐng)域,生物學、化學、物理學等學科都使用數(shù)學語言來描述自然世界的規(guī)律和現(xiàn)象。在社會科學和商科領(lǐng)域,經(jīng)濟學和金融學運用的數(shù)學概念,如微積分、線性代數(shù)和統(tǒng)計學等,使得我們能夠更好地理解經(jīng)濟和財務(wù)數(shù)據(jù),并進行決策。因此,學習數(shù)學可以讓我們更好地理解、溝通和交流各個領(lǐng)域的知識。

最后,學習數(shù)學也可以為我們的職業(yè)發(fā)展帶來廣泛的機遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機會,如金融界、數(shù)據(jù)科學、研究機構(gòu)、教育等。數(shù)學專業(yè)的人才,不只會提供理論支持,同時也能夠解決現(xiàn)實中具體的問題,使其在各自領(lǐng)域脫穎而出。

數(shù)學解題方法分別有哪些

1、配方法

所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個或多個多項式正整數(shù)冪的和形式。通過配方解決數(shù)學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達式。

2、因式分解法

因式分解是將多項式轉(zhuǎn)換為幾個積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

3、換元法

替代方法是數(shù)學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數(shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡單,更容易解決。

4、判別式法與韋達定理

一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質(zhì),還作為一個問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。

韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數(shù)的和和乘積的簡單應(yīng)用并尋找這兩個數(shù),也可以找到根的對稱函數(shù)并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。

5、待定系數(shù)法

在解決數(shù)學問題時,如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學問題,這種問題解決方法被稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。

6、構(gòu)造法

在解決問題時,我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數(shù),一個等價的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個問題,這種解決問題的數(shù)學方法,我們稱之為構(gòu)造方法。運用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學知識相互滲透,有助于解決問題。

1539390