八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

燁榮0 分享 時(shí)間:

在我們平凡無奇的學(xué)生時(shí)代,大家都背過各種知識(shí)點(diǎn)吧?知識(shí)點(diǎn)有時(shí)候特指教科書上或考試的知識(shí)。哪些知識(shí)點(diǎn)能夠真正幫助到我們呢?以下是小編為大家收集的八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn),歡迎閱讀與收藏。

八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

一、變量與函數(shù)

1.變量:在一個(gè)變化過程中,數(shù)值發(fā)生變化的量叫做變量。

2.常量:數(shù)值始終不變的量叫做 常量。

3.函數(shù):一般的,在一個(gè)變化過程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就說y是x的函數(shù),x是自變量。Y的值叫函數(shù)值。

4.函數(shù)解析式:表示x與y的函數(shù)關(guān)系的式子,叫函數(shù)解析式。自變量的取值不能使函數(shù)解析式的分母為0。

5.函數(shù)的圖像:一般的,對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象。

6.描點(diǎn)法畫函數(shù)圖像的步驟:①列表、②描點(diǎn)、③連線。

表示函數(shù)的方法:①列表法、②解析式法、③圖像法。

二、一次函數(shù)

1.正比例函數(shù):一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。

2.正比例函數(shù)的圖象與性質(zhì):

(1)圖象:正比例函數(shù)y= kx (k 是常數(shù),k≠0)) 的圖象是經(jīng)過原點(diǎn)的一條直線,我們稱它為直線y= kx 。

(2)性質(zhì):當(dāng)k>0時(shí),直線y= kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當(dāng)k<0時(shí),直線y= kx經(jīng)過二,四象限,從左向右下降,即隨著 x的增大y反而減小。

3.一次函數(shù):一般地,形如y=kx+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù)。當(dāng)b =0 時(shí),y=kx+b 即為 y=kx,所以正比例函數(shù),是一次函數(shù)的特例。

4.函數(shù)的圖象與性質(zhì):

(1)一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象是一條直線,我們稱它為直線 y=kx+b。 相當(dāng)于由直線y=kx平移|b|個(gè)單位長(zhǎng)度而得。

(2)性質(zhì):當(dāng)k>0時(shí),直線y= kx+b從左向右上升,即隨著x的增大y也增大;當(dāng)k<0時(shí),直線y= kx+b從左向右下降,即隨著 x的增大y反而減小。

5.求函數(shù)解析式的方法: 待定系數(shù)法(先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個(gè)式子的方法。)

八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)梳理

一、整式的乘法

1.同底數(shù)冪的乘法:aman=am+n(m,n都是正整數(shù))即同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。

2.冪的乘方法則:(am)n=amn(m,n都是正整數(shù))冪的乘方,底數(shù)不變,指數(shù)相乘。

3.積的乘方法則:(ab)n = anbn(n為正整數(shù)) 積的乘方=乘方的積

4.單項(xiàng)式與單項(xiàng)式相乘法則:

(1)系數(shù)與系數(shù)相乘;(2)同底數(shù)冪與同底數(shù)冪相乘;(3)其余字母及其指數(shù)不變作為積的因式

5.單項(xiàng)式與多項(xiàng)式相乘:就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

6.多項(xiàng)式與多項(xiàng)式相乘:先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

二、乘法公式

1.平方差公式:(a+b)(a-b)=a2-b2。

2.完全平方公式:(a±b)2=a2±2ab+b2

口訣:前平方,后平方,積的兩倍中間放,中間符號(hào)看情況。(這個(gè)情況就是前后兩項(xiàng)同號(hào)得正,異號(hào)得負(fù)。)

3.添括號(hào):添括號(hào)時(shí),如果括號(hào)前面是正號(hào),括到括號(hào)里面的各項(xiàng)都不變符號(hào);如果括號(hào)前面是負(fù)號(hào),括到括號(hào)里面的各項(xiàng)都改變符號(hào)。

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)

一、函數(shù):

一般地,在某一變化過程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

二、自變量取值范圍

使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。

三、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

(1)關(guān)系式(解析)法

兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做關(guān)系式(解析)法。

(2)列表法

把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

(3)圖象法

用圖象表示函數(shù)關(guān)系的方法叫做圖象法。

四、由函數(shù)關(guān)系式畫其圖像的一般步驟

(1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

(3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。

五、正比例函數(shù)和一次函數(shù)

1、正比例函數(shù)和一次函數(shù)的概念

一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。

特別地,當(dāng)一次函數(shù)中的b=0時(shí)(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。

2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線

3、一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過點(diǎn)(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(diǎn)(0,0)的直線。

第七章知識(shí)點(diǎn)

1、二元一次方程

含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的整式方程叫做二元一次方程。

2、二元一次方程的解

適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。

3、二元一次方程組

含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。

4、二元一次方程組的解

二元一次方程組中各個(gè)方程的.公共解,叫做這個(gè)二元一次方程組的解。

5、二元一次方程組的解法

(1)代入(消元)法(2)加減(消元)法

第八章知識(shí)點(diǎn)

1、刻畫數(shù)據(jù)的集中趨勢(shì)(平均水平)的量:平均數(shù)、眾數(shù)、中位數(shù)

2、平均數(shù)

(2)加權(quán)平均數(shù):

3、眾數(shù)

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。

4、中位數(shù)

一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。

初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

1.性質(zhì):

①不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)方向不變。

②不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。

③不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。

2.分類:

①一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

②一元一次不等式組:

a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。

數(shù)學(xué)求定義域口訣

求定義域有講究,四項(xiàng)原則須留意。

負(fù)數(shù)不能開平方,分母為零無意義。

指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次。

限制條件不唯一,滿足多個(gè)不等式。

求定義域要過關(guān),四項(xiàng)原則須注意。

負(fù)數(shù)不能開平方,分母為零無意義。

分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次。

限制條件不唯一,不等式組求解集。


1484159