數(shù)學八年級下冊知識點
初二是學習數(shù)學的一個關鍵時期,想要學好數(shù)學需要有好的學習方法,那么關于八年級下冊數(shù)學知識點有哪些呢?以下是小編準備的數(shù)學八年級下冊知識點,僅供參考。
數(shù)學八年級下冊知識點
如果我們知道了這兩個平方根的一個,那么就可以及時的根據(jù)相反數(shù)的概念得到它的另一個平方根。
如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根。0的平方根是0。負數(shù)在實數(shù)范圍內(nèi)不能開平方,只有在正數(shù)范圍內(nèi),才可以開平方根。例如:-1的平方根為i,-9的平方根為3i。
平方根包含了算術平方根,算術平方根是平方根中的一種。
平方根和算術平方根都只有非負數(shù)才有。
被開方數(shù)是乘方運算里的冪。
求平方根可通過逆運算平方來求。
開平方:求一個非負數(shù)a的平方根的運算叫做開平方,其中a叫做被開方數(shù)。
若x的平方等于a,那么x就叫做a的平方根,即√a=x
數(shù)學八年級下冊知識點梳理
1.算術平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
2.平方根:一般地,如果一個數(shù)x的.平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
3.正數(shù)有兩個平方根(一正一負)它們互為相反數(shù);0只有一個平方根,就是它本身;負數(shù)沒有平方根。
4.正數(shù)的立方根是正數(shù);0的立方根是0;負數(shù)的立方根是負數(shù)。
5.數(shù)a的相反數(shù)是-a,一個正實數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0
實數(shù)部分主要要求學生了解無理數(shù)和實數(shù)的概念,知道實數(shù)和數(shù)軸上的點一一對應,能估算無理數(shù)的大小;了解實數(shù)的運算法則及運算律,會進行實數(shù)的運算。重點是實數(shù)的意義和實數(shù)的分類;實數(shù)的運算法則及運算律。
初二數(shù)學下冊知識點
我們稱數(shù)值變化的量為變量(variable)。
有些量的數(shù)值是始終不變的,我們稱它們?yōu)槌A?constant)。
在一個變化過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們說x是自變量(independentvariable),y是x的函數(shù)(function)。
如果當x=a時y=b,那么b叫做當自變量的值為a時的函數(shù)值。
形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportionalfunction),其中k叫做比例系數(shù)。
形如y=kx+b(k,b是常數(shù),k≠0)的函數(shù),叫做一次函數(shù)(linearfunction)。正比例函數(shù)是一種特殊的一次函數(shù)。
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
每個二元一次方程組都對應兩個一次函數(shù),于是也對應兩條直線。從“形”的角度看,解方程組相當于確定兩條直線交點的坐標。
如何學好初中數(shù)學的方法
多做練習題
要想學好初中數(shù)學,必須多做練習,我們所說的“多做練習”,不是搞“題海戰(zhàn)術”。只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學過的知識攪得一塌糊涂,理不出頭緒,浪費時間又收獲不大,我們所說的“多做練習”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識,是否可以多解,其結(jié)論是否還可以加強、推廣等等。
課后總結(jié)和反思
在進行單元小結(jié)或?qū)W期總結(jié)時,要做到以下幾點:一看:看書、看筆記、看習題,通過看,回憶、熟悉所學內(nèi)容;二列:列出相關的知識點,標出重點、難點,列出各知識點之間的關系,這相當于寫出總結(jié)要點;三做:在此基礎上有目的、有重點、有選擇地解一些各種檔次、類型的習題,通過解題再反饋,發(fā)現(xiàn)問題、解決問題。
初中數(shù)學學習技巧
養(yǎng)成良好的學習數(shù)學習慣
多質(zhì)疑、勤思考、好動手、重歸納、注意應用。學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數(shù)學習慣包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學習幾個方面。
及時了解、掌握常用的數(shù)學思想和方法
中學數(shù)學學習要重點掌握的的數(shù)學思想有以上幾個:集合與對應思想,分類討論思想,數(shù)形結(jié)合思想,運動思想,轉(zhuǎn)化思想,變換思想。
有了數(shù)學思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
逐步形成“以我為主”的學習模式
數(shù)學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數(shù)學一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行。記數(shù)學筆記,特別是對概念理解的不同側(cè)面和數(shù)學規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
要建立數(shù)學糾錯本。把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。